


FUNDAMENTALS OF

Database
Systems

SEVENTH EDITION



This page intentionally left blank



FUNDAMENTALS OF

Database
Systems

SEVENTH EDITION

Ramez Elmasri
Department of Computer Science and Engineering
The University of Texas at Arlington

Shamkant B. Navathe
College of Computing
Georgia Institute of Technology

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney HongKong Seoul Singapore Taipei Tokyo



Vice President and Editorial Director, ECS:
Marcia J. Horton

Acquisitions Editor: Matt Goldstein

Editorial Assistant: Kelsey Loanes

Marketing Managers: Bram Van Kempen, Demetrius Hall

Marketing Assistant: Jon Bryant

Senior Managing Editor: Scott Disanno

Production Project Manager: Rose Kernan

Program Manager: Carole Snyder

Global HE Director of Vendor Sourcing
and Procurement: Diane Hynes

Director of Operations: Nick Sklitsis

Operations Specialist: Maura Zaldivar-Garcia

Cover Designer: Black Horse Designs

Manager, Rights and Permissions: Rachel Youdelman

Associate Project Manager, Rights and Permissions:
Timothy Nicholls

Full-Service Project Management: Rashmi Tickyani,
iEnergizer Aptara®, Ltd.

Composition: iEnergizer Aptara®, Ltd.

Printer/Binder: Edwards Brothers Malloy

Cover Printer: Phoenix Color/Hagerstown

Cover Image: Micha Pawlitzki/Terra/Corbis

Typeface: 10.5/12 Minion Pro

Copyright © 2016, 2011, 2007 by Ramez Elmasri and Shamkant B. Navathe. All rights reserved. Manufactured
in the United States of America. This publication is protected by Copyright and permissions should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to
use materials from this work, please submit a written request to Pearson Higher Education, Permissions
Department, 221 River Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective
suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties
and conditions of merchantability. Whether express, implied or statutory, fitness for a particular purpose, title
and non-infringement. In no event shall microsoft and/or its respective suppliers be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether
in an action of contract. Negligence or other tortious action, arising out of or in connection with the use or
performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may
make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Library of Congress Cataloging-in-Publication Data on File

10987654321
PEARSON ISBN-10:  0-13-397077-9
ISBN-13: 978-0-13-397077-7



To Amalia
and
to Ramy, Riyad, Katrina, and Thomas

R.E.

To my wife Aruna for her love, support, and understanding
and
to Rohan, Maya, and Ayush for bringing so much joy into our lives

S.B.N.



This page intentionally left blank



Preface

This book introduces the fundamental concepts
necessary for designing, using, and implementing
database systems and database applications. Our presentation stresses the funda-
mentals of database modeling and design, the languages and models provided by the
database management systems, and database system implementation techniques.
The book is meant to be used as a textbook for a one- or two-semester course in
database systems at the junior, senior, or graduate level, and as a reference book. Our
goal is to provide an in-depth and up-to-date presentation of the most important
aspects of database systems and applications, and related technologies. We assume
that readers are familiar with elementary programming and data-structuring con-
cepts and that they have had some exposure to the basics of computer organization.

New to This Edition
The following key features have been added in the seventh edition:

B A reorganization of the chapter ordering (this was based on a survey of the
instructors who use the textbook); however, the book is still organized so
that the individual instructor can choose to follow the new chapter ordering
or choose a different ordering of chapters (for example, follow the chapter
order from the sixth edition) when presenting the materials.

B There are two new chapters on recent advances in database systems and big
data processing; one new chapter (Chapter 24) covers an introduction to the
newer class of database systems known as NOSQL databases, and the other
new chapter (Chapter 25) covers technologies for processing big data,
including MapReduce and Hadoop.

B The chapter on query processing and optimization has been expanded and
reorganized into two chapters; Chapter 18 focuses on strategies and algo-
rithms for query processing whereas Chapter 19 focuses on query optimiza-
tion techniques.

u A second UNIVERSITY database example has been added to the early chap-
ters (Chapters 3 through 8) in addition to our COMPANY database example
from the previous editions.

B Many of the individual chapters have been updated to varying degrees to include
newer techniques and methods; rather than discuss these enhancements here,
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viii Preface

we will describe them later in the preface when we discuss the organization of
the seventh edition.

The following are key features of the book:

B A self-contained, flexible organization that can be tailored to individual
needs; in particular, the chapters can be used in different orders depending
on the instructor’s preference.

B A companion website (http://www.pearsonhighered.com/cs-resources)
includes data to be loaded into various types of relational databases for more
realistic student laboratory exercises.

B A dependency chart (shown later in this preface) to show which chapters
depend on other earlier chapters; this can guide the instructor who wants to
tailor the order of presentation of the chapters.

B A collection of supplements, including a robust set of materials for instruc-
tors and students such as PowerPoint slides, figures from the text, and an
instructor’s guide with solutions.

Organization and Contents of the Seventh Edition

There are some organizational changes in the seventh edition as well as improve-
ment to the individual chapters. The book is now divided into 12 parts as follows:

® Part 1 (Chapters 1 and 2) describes the basic introductory concepts neces-
sary for a good understanding of database models, systems, and languages.
Chapters 1 and 2 introduce databases, typical users, and DBMS concepts,
terminology, and architecture, as well as a discussion of the progression of
database technologies over time and a brief history of data models. These
chapters have been updated to introduce some of the newer technologies
such as NOSQL systems.

m Part 2 (Chapters 3 and 4) includes the presentation on entity-relationship
modeling and database design; however, it is important to note that instruc-
tors can cover the relational model chapters (Chapters 5 through 8) before
Chapters 3 and 4 if that is their preferred order of presenting the course
materials. In Chapter 3, the concepts of the Entity-Relationship (ER) model
and ER diagrams are presented and used to illustrate conceptual database
design. Chapter 4 shows how the basic ER model can be extended to incorpo-
rate additional modeling concepts such as subclasses, specialization, gener-
alization, union types (categories) and inheritance, leading to the
enhanced-ER (EER) data model and EER diagrams. The notation for the class
diagrams of UML are also introduced in Chapters 7 and 8 as an alternative
model and diagrammatic notation for ER/EER diagrams.

m Part 3 (Chapters 5 through 8) includes a detailed presentation on relational
databases and SQL with some additional new material in the SQL chapters
to cover a few SQL constructs that were not in the previous edition. Chapter 5



describes the basic relational model, its integrity constraints, and update
operations. Chapter 6 describes some of the basic parts of the SQL standard
for relational databases, including data definition, data modification opera-
tions, and simple SQL queries. Chapter 7 presents more complex SQL que-
ries, as well as the SQL concepts of triggers, assertions, views, and schema
modification. Chapter 8 describes the formal operations of the relational
algebra and introduces the relational calculus. The material on SQL (Chap-
ters 6 and 7) is presented before our presentation on relational algebra and
calculus in Chapter 8 to allow instructors to start SQL projects early in a
course if they wish (it is possible to cover Chapter 8 before Chapters 6 and 7
if the instructor desires this order). The final chapter in Part 2, Chapter 9,
covers ER- and EER-to-relational mapping, which are algorithms that can be
used for designing a relational database schema from a conceptual ER/EER
schema design.

Part 4 (Chapters 10 and 11) are the chapters on database programming tech-
niques; these chapters can be assigned as reading materials and augmented
with materials on the particular language used in the course for program-
ming projects (much of this documentation is readily available on the Web).
Chapter 10 covers traditional SQL programming topics, such as embedded
SQL, dynamic SQL, ODBC, SQLJ, JDBC, and SQL/CLI. Chapter 11 introduces
Web database programming, using the PHP scripting language in our exam-
ples, and includes new material that discusses Java technologies for Web
database programming.

Part 5 (Chapters 12 and 13) covers the updated material on object-relational
and object-oriented databases (Chapter 12) and XML (Chapter 13); both of
these chapters now include a presentation of how the SQL standard incorpo-
rates object concepts and XML concepts into more recent versions of the
SQL standard. Chapter 12 first introduces the concepts for object databases,
and then shows how they have been incorporated into the SQL standard in
order to add object capabilities to relational database systems. It then covers
the ODMG object model standard, and its object definition and query lan-
guages. Chapter 13 covers the XML (eXtensible Markup Language) model
and languages, and discusses how XML is related to database systems. It
presents XML concepts and languages, and compares the XML model to
traditional database models. We also show how data can be converted
between the XML and relational representations, and the SQL commands
for extracting XML documents from relational tables.

Part 6 (Chapters 14 and 15) are the normalization and relational design
theory chapters (we moved all the formal aspects of normalization algo-
rithms to Chapter 15). Chapter 14 defines functional dependencies, and
the normal forms that are based on functional dependencies. Chapter 14
also develops a step-by-step intuitive normalization approach, and includes
the definitions of multivalued dependencies and join dependencies.
Chapter 15 covers normalization theory, and the formalisms, theories,
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and algorithms developed for relational database design by normaliza-
tion, including the relational decomposition algorithms and the relational
synthesis algorithms.

Part 7 (Chapters 16 and 17) contains the chapters on file organizations on
disk (Chapter 16) and indexing of database files (Chapter 17). Chapter 16
describes primary methods of organizing files of records on disk, including
ordered (sorted), unordered (heap), and hashed files; both static and
dynamic hashing techniques for disk files are covered. Chapter 16 has been
updated to include materials on buffer management strategies for DBMSs as
well as an overview of new storage devices and standards for files and mod-
ern storage architectures. Chapter 17 describes indexing techniques for files,
including B-tree and B*-tree data structures and grid files, and has been
updated with new examples and an enhanced discussion on indexing,
including how to choose appropriate indexes and index creation during
physical design.

Part 8 (Chapters 18 and 19) includes the chapters on query processing algo-
rithms (Chapter 18) and optimization techniques (Chapter 19); these two
chapters have been updated and reorganized from the single chapter that
covered both topics in the previous editions and include some of the newer
techniques that are used in commercial DBMSs. Chapter 18 presents algo-
rithms for searching for records on disk files, and for joining records from
two files (tables), as well as for other relational operations. Chapter 18 con-
tains new material, including a discussion of the semi-join and anti-join
operations with examples of how they are used in query processing, as well
as a discussion of techniques for selectivity estimation. Chapter 19 covers
techniques for query optimization using cost estimation and heuristic rules;
it includes new material on nested subquery optimization, use of histograms,
physical optimization, and join ordering methods and optimization of
typical queries in data warehouses.

Part 9 (Chapters 20, 21, and 22) covers transaction processing concepts;
concurrency control; and database recovery from failures. These chapters
have been updated to include some of the newer techniques that are used
in some commercial and open source DBMSs. Chapter 20 introduces the
techniques needed for transaction processing systems, and defines the
concepts of recoverability and serializability of schedules; it has a new sec-
tion on buffer replacement policies for DBMSs and a new discussion on
the concept of snapshot isolation. Chapter 21 gives an overview of the var-
ious types of concurrency control protocols, with a focus on two-phase
locking. We also discuss timestamp ordering and optimistic concurrency
control techniques, as well as multiple-granularity locking. Chapter 21
includes a new presentation of concurrency control methods that are based
on the snapshot isolation concept. Finally, Chapter 23 focuses on database
recovery protocols, and gives an overview of the concepts and techniques
that are used in recovery.



m Part 10 (Chapters 23, 24, and 25) includes the chapter on distributed data-
bases (Chapter 23), plus the two new chapters on NOSQL storage systems
for big data (Chapter 24) and big data technologies based on Hadoop and
MapReduce (Chapter 25). Chapter 23 introduces distributed database
concepts, including availability and scalability, replication and fragmenta-
tion of data, maintaining data consistency among replicas, and many other
concepts and techniques. In Chapter 24, NOSQL systems are categorized
into four general categories with an example system in each category used
for our examples, and the data models, operations, as well as the replica-
tion/distribution/scalability strategies of each type of NOSQL system are
discussed and compared. In Chapter 25, the MapReduce programming
model for distributed processing of big data is introduced, and then we
have presentations of the Hadoop system and HDFS (Hadoop Distributed
File System), as well as the Pig and Hive high-level interfaces, and the
YARN architecture.

m Part 11 (Chapters 26 through 29) is entitled Advanced Database Models,
Systems, and Applications and includes the following materials: Chapter 26
introduces several advanced data models including active data-
bases/triggers (Section 26.1), temporal databases (Section 26.2), spatial data-
bases (Section 26.3), multimedia databases (Section 26.4), and deductive
databases (Section 26.5). Chapter 27 discusses information retrieval (IR)
and Web search, and includes topics such as IR and keyword-based search,
comparing DB with IR, retrieval models, search evaluation, and ranking
algorithms. Chapter 28 is an introduction to data mining including over-
views of various data mining methods such as associate rule mining, cluster-
ing, classification, and sequential pattern discovery. Chapter 29 is an
overview of data warehousing including topics such as data warehousing
models and operations, and the process of building a data warehouse.

® Part 12 (Chapter 30) includes one chapter on database security, which
includes a discussion of SQL commands for discretionary access control
(GRANT, REVOKE), as well as mandatory security levels and models for
including mandatory access control in relational databases, and a discussion
of threats such as SQL injection attacks, as well as other techniques and
methods related to data security and privacy.

Appendix A gives a number of alternative diagrammatic notations for displaying a
conceptual ER or EER schema. These may be substituted for the notation we use, if
the instructor prefers. Appendix B gives some important physical parameters of
disks. Appendix C gives an overview of the QBE graphical query language, and
Appendixes D and E (available on the book’s Companion Website located at
http://www.pearsonhighered.com/elmasri) cover legacy database systems, based on
the hierarchical and network database models. They have been used for more than
thirty years as a basis for many commercial database applications and transaction-
processing systems.

Preface
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Guidelines for Using This Book

There are many different ways to teach a database course. The chapters in Parts 1
through 7 can be used in an introductory course on database systems in the order
that they are given or in the preferred order of individual instructors. Selected chap-
ters and sections may be left out and the instructor can add other chapters from the
rest of the book, depending on the emphasis of the course. At the end of the open-
ing section of some of the book’s chapters, we list sections that are candidates for
being left out whenever a less-detailed discussion of the topic is desired. We suggest
covering up to Chapter 15 in an introductory database course and including selected
parts of other chapters, depending on the background of the students and the
desired coverage. For an emphasis on system implementation techniques, chapters
from Parts 7, 8, and 9 should replace some of the earlier chapters.

Chapters 3 and 4, which cover conceptual modeling using the ER and EER models,
are important for a good conceptual understanding of databases. However, they
may be partially covered, covered later in a course, or even left out if the emphasis
is on DBMS implementation. Chapters 16 and 17 on file organizations and indexing
may also be covered early, later, or even left out if the emphasis is on database mod-
els and languages. For students who have completed a course on file organization,
parts of these chapters can be assigned as reading material or some exercises can be
assigned as a review for these concepts.

If the emphasis of a course is on database design, then the instructor should cover
Chapters 3 and 4 early on, followed by the presentation of relational databases. A
total life-cycle database design and implementation project would cover conceptual
design (Chapters 3 and 4), relational databases (Chapters 5, 6, and 7), data model
mapping (Chapter 9), normalization (Chapter 14), and application programs
implementation with SQL (Chapter 10). Chapter 11 also should be covered if the
emphasis is on Web database programming and applications. Additional documen-
tation on the specific programming languages and RDBMS used would be required.
The book is written so that it is possible to cover topics in various sequences. The
following chapter dependency chart shows the major dependencies among chap-
ters. As the diagram illustrates, it is possible to start with several different topics
following the first two introductory chapters. Although the chart may seem com-
plex, it is important to note that if the chapters are covered in order, the dependen-
cies are not lost. The chart can be consulted by instructors wishing to use an
alternative order of presentation.

For a one-semester course based on this book, selected chapters can be assigned as
reading material. The book also can be used for a two-semester course sequence.
The first course, Introduction to Database Design and Database Systems, at the
sophomore, junior, or senior level, can cover most of Chapters 1 through 15. The
second course, Database Models and Implementation Techniques, at the senior or
tirst-year graduate level, can cover most of Chapters 16 through 30. The two-
semester sequence can also be designed in various other ways, depending on the
preferences of the instructors.
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chapter

Databases and
Database Users

Databases and database systems are an essential
component of life in modern society: most of us
encounter several activities every day that involve some interaction with a database.
For example, if we go to the bank to deposit or withdraw funds, if we make a hotel
or airline reservation, if we access a computerized library catalog to search for a
bibliographic item, or if we purchase something online—such as a book, toy, or
computer—chances are that our activities will involve someone or some computer
program accessing a database. Even purchasing items at a supermarket often auto-
matically updates the database that holds the inventory of grocery items.

These interactions are examples of what we may call traditional database
applications, in which most of the information that is stored and accessed is either
textual or numeric. In the past few years, advances in technology have led to exciting
new applications of database systems. The proliferation of social media Web sites,
such as Facebook, Twitter, and Flickr, among many others, has required the cre-
ation of huge databases that store nontraditional data, such as posts, tweets,
images, and video clips. New types of database systems, often referred to as big data
storage systems, or NOSQL systems, have been created to manage data for social
media applications. These types of systems are also used by companies such as
Google, Amazon, and Yahoo, to manage the data required in their Web search
engines, as well as to provide cloud storage, whereby users are provided with stor-
age capabilities on the Web for managing all types of data including documents,
programs, images, videos and emails. We will give an overview of these new types
of database systems in Chapter 24.

We now mention some other applications of databases. The wide availability of
photo and video technology on cellphones and other devices has made it possible to
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store images, audio clips, and video streams digitally. These types of files are becom-
ing an important component of multimedia databases. Geographic information
systems (GISs) can store and analyze maps, weather data, and satellite images.
Data warehouses and online analytical processing (OLAP) systems are used in
many companies to extract and analyze useful business information from very large
databases to support decision making. Real-time and active database technology
is used to control industrial and manufacturing processes. And database search
techniques are being applied to the World Wide Web to improve the search for
information that is needed by users browsing the Internet.

To understand the fundamentals of database technology, however, we must start
from the basics of traditional database applications. In Section 1.1 we start by defin-
ing a database, and then we explain other basic terms. In Section 1.2, we provide a
simple UNIVERSITY database example to illustrate our discussion. Section 1.3
describes some of the main characteristics of database systems, and Sections 1.4
and 1.5 categorize the types of personnel whose jobs involve using and interacting
with database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion
of the various capabilities provided by database systems and discuss some typical
database applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems can study
Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and
go on to Chapter 2.

1.1 Introduction

Databases and database technology have had a major impact on the growing use of
computers. It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, electronic commerce, social media, engi-
neering, medicine, genetics, law, education, and library science. The word database
is so commonly used that we must begin by defining what a database is. Our initial
definition is quite general.

A database is a collection of related data.! By data, we mean known facts that can
be recorded and that have implicit meaning. For example, consider the names,
telephone numbers, and addresses of the people you know. Nowadays, this data is
typically stored in mobile phones, which have their own simple database software.
This data can also be recorded in an indexed address book or stored on a hard
drive, using a personal computer and software such as Microsoft Access or Excel.
This collection of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of text to be related data and hence to

"We will use the word data as both singular and plural, as is common in database literature; the context
will determine whether it is singular or plural. In standard English, data is used for plural and datum for
singular.
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constitute a database. However, the common use of the term database is usually
more restricted. A database has the following implicit properties:

® A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD). Changes to the miniworld
are reflected in the database.

B A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

u A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in
which these users are interested.

In other words, a database has some source from which data is derived, some degree
of interaction with events in the real world, and an audience that is actively inter-
ested in its contents. The end users of a database may perform business transactions
(for example, a customer buys a camera) or events may happen (for example, an
employee has a baby) that cause the information in the database to change. In order
for a database to be accurate and reliable at all times, it must be a true reflection of
the miniworld that it represents; therefore, changes must be reflected in the data-
base as soon as possible.

A database can be of any size and complexity. For example, the list of names and
addresses referred to earlier may consist of only a few hundred records, each with a
simple structure. On the other hand, the computerized catalog of a large library
may contain half a million entries organized under different categories—by pri-
mary author’s last name, by subject, by book title—with each category organized
alphabetically. A database of even greater size and complexity would be maintained
by a social media company such as Facebook, which has more than a billion users.
The database has to maintain information on which users are related to one another
as friends, the postings of each user, which users are allowed to see each posting,
and a vast amount of other types of information needed for the correct operation of
their Web site. For such Web sites, a large number of databases are needed to keep
track of the constantly changing information required by the social media Web site.

An example of a large commercial database is Amazon.com. It contains data for
over 60 million active users, and millions of books, CDs, videos, DVDs, games,
electronics, apparel, and other items. The database occupies over 42 terabytes
(a terabyte is 10'? bytes worth of storage) and is stored on hundreds of computers
(called servers). Millions of visitors access Amazon.com each day and use the
database to make purchases. The database is continually updated as new books
and other items are added to the inventory, and stock quantities are updated as
purchases are transacted.

A database may be generated and maintained manually or it may be computer-
ized. For example, a library card catalog is a database that may be created and
maintained manually. A computerized database may be created and maintained
either by a group of application programs written specifically for that task or by a
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database management system. Of course, we are only concerned with computer-
ized databases in this text.

A database management system (DBMS) is a computerized system that enables
users to create and maintain a database. The DBMS is a general-purpose software
system that facilitates the processes of defining, constructing, manipulating, and
sharing databases among various users and applications. Defining a database
involves specifying the data types, structures, and constraints of the data to be
stored in the database. The database definition or descriptive information is also
stored by the DBMS in the form of a database catalog or dictionary; it is called
meta-data. Constructing the database is the process of storing the data on some
storage medium that is controlled by the DBMS. Manipulating a database includes
functions such as querying the database to retrieve specific data, updating the data-
base to reflect changes in the miniworld, and generating reports from the data.
Sharing a database allows multiple users and programs to access the database
simultaneously.

An application program accesses the database by sending queries or requests for
data to the DBMS. A query” typically causes some data to be retrieved; a transaction
may cause some data to be read and some data to be written into the database.

Other important functions provided by the DBMS include protecting the database
and maintaining it over a long period of time. Protection includes system protec-
tion against hardware or software malfunction (or crashes) and security protection
against unauthorized or malicious access. A typical large database may have a life
cycle of many years, so the DBMS must be able to maintain the database system by
allowing the system to evolve as requirements change over time.

It is not absolutely necessary to use general-purpose DBMS software to implement
a computerized database. It is possible to write a customized set of programs to cre-
ate and maintain the database, in effect creating a special-purpose DBMS software
for a specific application, such as airlines reservations. In either case—whether we
use a general-purpose DBMS or not—a considerable amount of complex software
is deployed. In fact, most DBMSs are very complex software systems.

To complete our initial definitions, we will call the database and DBMS software
together a database system. Figure 1.1 illustrates some of the concepts we have
discussed so far.

1.2 An Example

Let us consider a simple example that most readers may be familiar with: a
UNIVERSITY database for maintaining information concerning students, courses,
and grades in a university environment. Figure 1.2 shows the database structure
and a few sample data records. The database is organized as five files, each of which

The term query, originally meaning a question or an inquiry, is sometimes loosely used for all types of
interactions with databases, including modifying the data.
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Users/Programmers
Database \
System J
Application Programs/Queries
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Queries/Programs
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Definition Stored Database
(Meta-Data)

Figure 1.1

A simplified database
system environment.
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stores data records of the same type.> The STUDENT file stores data on each stu-
dent, the COURSE file stores data on each course, the SECTION file stores data on
each section of a course, the GRADE_REPORT file stores the grades that students
receive in the various sections they have completed, and the PREREQUISITE file
stores the prerequisites of each course.

To define this database, we must specify the structure of the records of each file by
specifying the different types of data elements to be stored in each record. In
Figure 1.2, each STUDENT record includes data to represent the student’s Name,
Student_number, Class (such as freshman or ‘1’, sophomore or 2°, and so forth),
and Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each
COURSE record includes data to represent the Course_name, Course_number,
Credit_hours, and Department (the department that offers the course), and so
on. We must also specify a data type for each data element within a record. For
example, we can specify that Name of STUDENT is a string of alphabetic characters,
Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a

SWe use the term file informally here. At a conceptual level, a file is a collection of records that may or
may not be ordered.
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A database that stores
student and course
information.
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STUDENT
Name Student_number Class Major
Smith 17 1 CS
Brown 8 2 CS
COURSE
Course_name Course_number | Credit_hours | Department
Intro to Computer Science CS1310 4 CS
Data Structures CS3320 4 CS
Discrete Mathematics MATH2410 3 MATH
Database CS3380 3 CS
SECTION
Section_identifier | Course_number | Semester Year Instructor
85 MATH2410 Fall 07 King
92 CS1310 Fall 07 Anderson
102 CS3320 Spring 08 Knuth
112 MATH2410 Fall 08 Chang
119 CS1310 Fall 08 Anderson
135 CS3380 Fall 08 Stone

GRADE_REPORT

Student_number Section_identifier Grade
17 112 B
17 119 C
8 85 A
8 92 A
8 102 B
8 135 A
PREREQUISITE
Course_number Prerequisite_number
CS3380 CS3320
CS3380 MATH2410
CS3320 CS1310
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single character from the set {*A’, ‘B’, ‘C’, ‘D’, ‘F’, T'}. We may also use a coding
scheme to represent the values of a data item. For example, in Figure 1.2 we rep-
resent the Class of a STUDENT as 1 for freshman, 2 for sophomore, 3 for junior,
4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student,
course, section, grade report, and prerequisite as a record in the appropriate file.
Notice that records in the various files may be related. For example, the record for
Smith in the STUDENT file is related to two records in the GRADE_REPORT file that
specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE
file relates two course records: one representing the course and the other represent-
ing the prerequisite. Most medium-size and large databases include many types of
records and have many relationships among the records.

Database manipulation involves querying and updating. Examples of queries are as
follows:

® Retrieve the transcript—a list of all courses and grades—of ‘Smith’

®m List the names of students who took the section of the ‘Database’ course
offered in fall 2008 and their grades in that section

m List the prerequisites of the ‘Database’ course
Examples of updates include the following:

B Change the class of ‘Smith’ to sophomore
®m Create a new section for the ‘Database’ course for this semester

® Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

These informal queries and updates must be specified precisely in the query lan-
guage of the DBMS before they can be processed.

At this stage, it is useful to describe the database as part of a larger undertaking
known as an information system within an organization. The Information Tech-
nology (IT) department within an organization designs and maintains an informa-
tion system consisting of various computers, storage systems, application software,
and databases. Design of a new application for an existing database or design of a
brand new database starts off with a phase called requirements specification and
analysis. These requirements are documented in detail and transformed into a
conceptual design that can be represented and manipulated using some comput-
erized tools so that it can be easily maintained, modified, and transformed into a
database implementation. (We will introduce a model called the Entity-Relation-
ship model in Chapter 3 that is used for this purpose.) The design is then translated
to a logical design that can be expressed in a data model implemented in a com-
mercial DBMS. (Various types of DBMSs are discussed throughout the text, with an
emphasis on relational DBMSs in Chapters 5 through 9.)

The final stage is physical design, during which further specifications are provided for
storing and accessing the database. The database design is implemented, populated
with actual data, and continuously maintained to reflect the state of the miniworld.

9
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1.3 Characteristics of the Database Approach

A number of characteristics distinguish the database approach from the much
older approach of writing customized programs to access data stored in files. In
traditional file processing, each user defines and implements the files needed for a
specific software application as part of programming the application. For example,
one user, the grade reporting office, may keep files on students and their grades.
Programs to print a student’s transcript and to enter new grades are implemented
as part of the application. A second user, the accounting office, may keep track of
students’ fees and their payments. Although both users are interested in data about
students, each user maintains separate files—and programs to manipulate these
files—because each requires some data not available from the other user’s files.
This redundancy in defining and storing data results in wasted storage space and
in redundant efforts to maintain common up-to-date data.

In the database approach, a single repository maintains data that is defined once
and then accessed by various users repeatedly through queries, transactions, and
application programs. The main characteristics of the database approach versus the
file-processing approach are the following:

B Self-describing nature of a database system
B Insulation between programs and data, and data abstraction
® Support of multiple views of the data

® Sharing of data and multiuser transaction processing

We describe each of these characteristics in a separate section. We will discuss addi-
tional characteristics of database systems in Sections 1.6 through 1.8.

1.3.1 Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS cata-
log, which contains information such as the structure of each file, the type and stor-
age format of each data item, and various constraints on the data. The information
stored in the catalog is called meta-data, and it describes the structure of the pri-
mary database (Figure 1.1). It is important to note that some newer types of data-
base systems, known as NOSQL systems, do not require meta-data. Rather the data
is stored as self-describing data that includes the data item names and data values
together in one structure (see Chapter 24).

The catalog is used by the DBMS software and also by database users who need
information about the database structure. A general-purpose DBMS software
package is not written for a specific database application. Therefore, it must refer
to the catalog to know the structure of the files in a specific database, such as the
type and format of data it will access. The DBMS software must work equally well
with any number of database applications—for example, a university database, a
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banking database, or a company database—as long as the database definition is
stored in the catalog.

In traditional file processing, data definition is typically part of the application pro-
grams themselves. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. For
example, an application program written in C++ may have struct or class declara-
tions. Whereas file-processing software can access only specific databases, DBMS
software can access diverse databases by extracting the database definitions from
the catalog and using these definitions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of
all the files shown. Figure 1.3 shows some entries in a database catalog. Whenever a
request is made to access, say, the Name of a STUDENT record, the DBMS software
refers to the catalog to determine the structure of the STUDENT file and the position
and size of the Name data item within a STUDENT record. By contrast, in a typical
file-processing application, the file structure and, in the extreme case, the exact
location of Name within a STUDENT record are already coded within each program
that accesses this data item.

11

RELATIONS Figure 1.3
Relation_name No_of_columns An example of a
database catalog for

STUDENT 4 the database in
COURSE 4 Figure 1.2,
SECTION 5

GRADE_REPORT 3

PREREQUISITE 2

COLUMNS

Column_name Data_type Belongs_to_relation
Name Character (30) STUDENT
Student_number Character (4) STUDENT
Class Integer (1) STUDENT
Major Major_type STUDENT
Course_name Character (10) COURSE
Course_number XXXXNNNN COURSE
Prerequisite_number XXXXNNNN PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors.
XXXXNNNN is used to define a type with four alphabetic characters followed by four nume

ric digits.
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1.3.2 Insulation between Programs and Data,
and Data Abstraction

In traditional file processing, the structure of data files is embedded in the applica-
tion programs, so any changes to the structure of a file may require changing all
programs that access that file. By contrast, DBMS access programs do not require
such changes in most cases. The structure of data files is stored in the DBMS cata-
log separately from the access programs. We call this property program-data
independence.

For example, a file access program may be written in such a way that it can access
only STUDENT records of the structure shown in Figure 1.4. If we want to add
another piece of data to each STUDENT record, say the Birth_date, such a program
will no longer work and must be changed. By contrast, in a DBMS environment, we
only need to change the description of STUDENT records in the catalog (Figure 1.3)
to reflect the inclusion of the new data item Birth_date; no programs are changed.
The next time a DBMS program refers to the catalog, the new structure of
STUDENT records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational
systems (see Chapter 12), users can define operations on data as part of the database
definitions. An operation (also called a function or method) is specified in two
parts. The interface (or signature) of an operation includes the operation name and
the data types of its arguments (or parameters). The implementation (or method) of
the operation is specified separately and can be changed without affecting the inter-
face. User application programs can operate on the data by invoking these opera-
tions through their names and arguments, regardless of how the operations are
implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation. The data
model uses logical concepts, such as objects, their properties, and their interrela-
tionships, that may be easier for most users to understand than computer storage
concepts. Hence, the data model hides storage and implementation details that are
not of interest to most database users.

Looking at the example in Figures 1.2 and 1.3, the internal implementation of the
STUDENT file may be defined by its record length—the number of characters
(bytes) in each record—and each data item may be specified by its starting byte
within a record and its length in bytes. The STUDENT record would thus be repre-
sented as shown in Figure 1.4. But a typical database user is not concerned with the
location of each data item within a record or its length; rather, the user is concerned
that when a reference is made to Name of STUDENT, the correct value is returned.
A conceptual representation of the STUDENT records is shown in Figure 1.2. Many
other details of file storage organization—such as the access paths specified on a
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Data ltem Name Starting Position in Record Length in Characters (bytes)
Name ! 30 Figure 1.4
Student_number 31 4 Internal storage format
Class 35 1 for a STUDENT record,
Major 36 4 based on thg database
catalog in Figure 1.3.

file—can be hidden from database users by the DBMS; we discuss storage details in
Chapters 16 and 17.

In the database approach, the detailed structure and organization of each file are
stored in the catalog. Database users and application programs refer to the concep-
tual representation of the files, and the DBMS extracts the details of file storage
from the catalog when these are needed by the DBMS file access modules. Many
data models can be used to provide this data abstraction to database users. A major
part of this text is devoted to presenting various data models and the concepts they
use to abstract the representation of data.

In object-oriented and object-relational databases, the abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users.
For example, an operation CALCULATE_GPA can be applied to a STUDENT object
to calculate the grade point average. Such operations can be invoked by the user
queries or application programs without having to know the details of how the
operations are implemented.

1.3.3 Support of Multiple Views of the Data

A database typically has many types of users, each of whom may require a different
perspective or view of the database. A view may be a subset of the database or it may
contain virtual data that is derived from the database files but is not explicitly stored.
Some users may not need to be aware of whether the data they refer to is stored or
derived. A multiuser DBMS whose users have a variety of distinct applications must
provide facilities for defining multiple views. For example, one user of the database
of Figure 1.2 may be interested only in accessing and printing the transcript of each
student; the view for this user is shown in Figure 1.5(a). A second user, who is inter-
ested only in checking that students have taken all the prerequisites of each course
for which the student registers, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the
database at the same time. This is essential if data for multiple applications is to be
integrated and maintained in a single database. The DBMS must include concurrency
control software to ensure that several users trying to update the same data
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TRANSCRIPT
Student_transcript
Student_name
Course_number Grade Semester Year Section_id
. CS1310 C Fall 08 119
Smith
MATH2410 B Fall 08 112
MATH2410 A Fall 07 85
CS1310 A Fall 07 92
Brown -
CS3320 B Spring 08 102
(a) CS3380 A Fall 08 135
COURSE_PREREQUISITES
Course_name Course_number Prerequisites
CS3320
Database CS3380
MATH2410
(b) Data Structures CS3320 CS1310
Figure 1.5

Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view.
(b) The COURSE_PREREQUISITES view.

do so in a controlled manner so that the result of the updates is correct. For exam-
ple, when several reservation agents try to assign a seat on an airline flight, the
DBMS should ensure that each seat can be accessed by only one agent at a time for
assignment to a passenger. These types of applications are generally called online
transaction processing (OLTP) applications. A fundamental role of multiuser
DBMS software is to ensure that concurrent transactions operate correctly and
efficiently.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. Each transaction is sup-
posed to execute a logically correct database access if executed in its entirety with-
out interference from other transactions. The DBMS must enforce several
transaction properties. The isolation property ensures that each transaction
appears to execute in isolation from other transactions, even though hundreds of
transactions may be executing concurrently. The atomicity property ensures that
either all the database operations in a transaction are executed or none are. We dis-
cuss transactions in detail in Part 9.

The preceding characteristics are important in distinguishing a DBMS from tradi-
tional file-processing software. In Section 1.6 we discuss additional features that
characterize a DBMS. First, however, we categorize the different types of people
who work in a database system environment.
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1.4 Actors on the Scene

For a small personal database, such as the list of addresses discussed in Section 1.1,
one person typically defines, constructs, and manipulates the database, and there is
no sharing. However, in large organizations, many people are involved in the
design, use, and maintenance of a large database with hundreds or thousands of
users. In this section we identify the people whose jobs involve the day-to-day use
of a large database; we call them the actors on the scene. In Section 1.5 we consider
people who may be called workers behind the scene—those who work to maintain
the database system environment but who are not actively interested in the data-
base contents as part of their daily job.

1.4.1 Database Administrators

In any organization where many people use the same resources, there is a need for
a chief administrator to oversee and manage these resources. In a database environ-
ment, the primary resource is the database itself, and the secondary resource is the
DBMS and related software. Administering these resources is the responsibility of
the database administrator (DBA). The DBA is responsible for authorizing access
to the database, coordinating and monitoring its use, and acquiring software and
hardware resources as needed. The DBA is accountable for problems such as secu-
rity breaches and poor system response time. In large organizations, the DBA is
assisted by a staff that carries out these functions.

1.4.2 Database Designers

Database designers are responsible for identifying the data to be stored in the data-
base and for choosing appropriate structures to represent and store this data. These
tasks are mostly undertaken before the database is actually implemented and popu-
lated with data. It is the responsibility of database designers to communicate with
all prospective database users in order to understand their requirements and to cre-
ate a design that meets these requirements. In many cases, the designers are on the
staff of the DBA and may be assigned other staff responsibilities after the database
design is completed. Database designers typically interact with each potential group
of users and develop views of the database that meet the data and processing
requirements of these groups. Each view is then analyzed and integrated with the
views of other user groups. The final database design must be capable of supporting
the requirements of all user groups.

1.4.3 End Users

End users are the people whose jobs require access to the database for querying,
updating, and generating reports; the database primarily exists for their use. There
are several categories of end users:

B Casual end users occasionally access the database, but they may need differ-
ent information each time. They use a sophisticated database query interface
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to specify their requests and are typically middle- or high-level managers or
other occasional browsers.

® Naive or parametric end users make up a sizable portion of database
end users. Their main job function revolves around constantly querying
and updating the database, using standard types of queries and updates—
called canned transactions—that have been carefully programmed and
tested. Many of these tasks are now available as mobile apps for use with
mobile devices. The tasks that such users perform are varied. A few
examples are:

O Bank customers and tellers check account balances and post withdrawals
and deposits.

O Reservation agents or customers for airlines, hotels, and car rental com-
panies check availability for a given request and make reservations.

O Employees at receiving stations for shipping companies enter package
identifications via bar codes and descriptive information through buttons
to update a central database of received and in-transit packages.

O Social media users post and read items on social media Web sites.

u Sophisticated end users include engineers, scientists, business analysts, and
others who thoroughly familiarize themselves with the facilities of the DBMS
in order to implement their own applications to meet their complex require-
ments.

m Standalone users maintain personal databases by using ready-made pro-
gram packages that provide easy-to-use menu-based or graphics-based
interfaces. An example is the user of a financial software package that stores
a variety of personal financial data.

A typical DBMS provides multiple facilities to access a database. Naive end users
need to learn very little about the facilities provided by the DBMS; they simply have
to understand the user interfaces of the mobile apps or standard transactions
designed and implemented for their use. Casual users learn only a few facilities that
they may use repeatedly. Sophisticated users try to learn most of the DBMS facilities
in order to achieve their complex requirements. Standalone users typically become
very proficient in using a specific software package.

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive and
parametric end users, and develop specifications for standard canned transactions
that meet these requirements. Application programmers implement these specifi-
cations as programs; then they test, debug, document, and maintain these canned
transactions. Such analysts and programmers—commonly referred to as software
developers or software engineers—should be familiar with the full range of capa-
bilities provided by the DBMS to accomplish their tasks.



1.6 Advantages of Using the DBMS Approach

1.5 Workers behind the Scene

In addition to those who design, use, and administer a database, others are associ-
ated with the design, development, and operation of the DBMS software and system
environment. These persons are typically not interested in the database content
itself. We call them the workers behind the scene, and they include the following
categories:

= DBMS system designers and implementers design and implement the
DBMS modules and interfaces as a software package. A DBMS is a very
complex software system that consists of many components, or modules,
including modules for implementing the catalog, query language process-
ing, interface processing, accessing and buffering data, controlling concur-
rency, and handling data recovery and security. The DBMS must interface
with other system software, such as the operating system and compilers for
various programming languages.

B Tool developers design and implement tools—the software packages that
facilitate database modeling and design, database system design, and
improved performance. Tools are optional packages that are often pur-
chased separately. They include packages for database design, performance
monitoring, natural language or graphical interfaces, prototyping, simula-
tion, and test data generation. In many cases, independent software vendors
develop and market these tools.

B Operators and maintenance personnel (system administration personnel)
are responsible for the actual running and maintenance of the hardware and
software environment for the database system.

Although these categories of workers behind the scene are instrumental in making
the database system available to end users, they typically do not use the database
contents for their own purposes.

1.6 Advantages of Using the DBMS Approach

In this section we discuss some additional advantages of using a DBMS and the
capabilities that a good DBMS should possess. These capabilities are in addition to
the four main characteristics discussed in Section 1.3. The DBA must utilize these
capabilities to accomplish a variety of objectives related to the design, administra-
tion, and use of a large multiuser database.

1.6.1 Controlling Redundancy

In traditional software development utilizing file processing, every user group
maintains its own files for handling its data-processing applications. For example,
consider the UNIVERSITY database example of Section 1.2; here, two groups of
users might be the course registration personnel and the accounting office. In the
traditional approach, each group independently keeps files on students. The
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accounting office keeps data on registration and related billing information,
whereas the registration office keeps track of student courses and grades. Other
groups may further duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems.
First, there is the need to perform a single logical update—such as entering data on
a new student—multiple times: once for each file where student data is recorded.
This leads to duplication of effort. Second, storage space is wasted when the same
data is stored repeatedly, and this problem may be serious for large databases.
Third, files that represent the same data may become inconsistent. This may happen
because an update is applied to some of the files but not to others. Even if an
update—such as adding a new student—is applied to all the appropriate files, the
data concerning the student may still be inconsistent because the updates are applied
independently by each user group. For example, one user group may enter a stu-
dent’s birth date erroneously as JAN-19-1988’, whereas the other user groups may
enter the correct value of JAN-29-1988’.

In the database approach, the views of different user groups are integrated during
database design. Ideally, we should have a database design that stores each logical
data item—such as a student’s name or birth date—in only one place in the data-
base. This is known as data normalization, and it ensures consistency and saves
storage space (data normalization is described in Part 6 of the text).

However, in practice, it is sometimes necessary to use controlled redundancy to
improve the performance of queries. For example, we may store Student_name and
Course_number redundantly in a GRADE_REPORT file (Figure 1.6(a)) because
whenever we retrieve a GRADE_REPORT record, we want to retrieve the student
name and course number along with the grade, student number, and section identi-
fier. By placing all the data together, we do not have to search multiple files to col-
lect this data. This is known as denormalization. In such cases, the DBMS should

Figure 1.6
Redundant storage
of Student_name
and Course_name in
GRADE_REPORT.
(a) Consistent data.
(b) Inconsistent
record.

GRADE_REPORT

Student_number | Student_name | Section_identifier | Course_number | Grade
17 Smith 112 MATH2410 B
17 Smith 119 CS1310 C
8 Brown 85 MATH2410 A
8 Brown 92 CS1310 A
8 Brown 102 CS3320 B
(a) 8 Brown 135 CS3380 A

GRADE_REPORT
Student_number | Student_name | Section_identifier | Course_number | Grade
(b) 17 Brown 112 MATH2410 B
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have the capability to control this redundancy in order to prohibit inconsisten-
cies among the files. This may be done by automatically checking that the
Student_name-Student_number values in any GRADE_REPORT record in Fig-
ure 1.6(a) match one of the Name—Student_number values of a STUDENT record (Fig-
ure 1.2). Similarly, the Section_identifier—Course_number values in GRADE_REPORT
can be checked against SECTION records. Such checks can be specified to the DBMS
during database design and automatically enforced by the DBMS whenever the
GRADE_REPORT file is updated. Figure 1.6(b) shows a GRADE_REPORT record that
is inconsistent with the STUDENT file in Figure 1.2; this kind of error may be entered
if the redundancy is not controlled. Can you tell which part is inconsistent?

1.6.2 Restricting Unauthorized Access

When multiple users share a large database, it is likely that most users will not be
authorized to access all information in the database. For example, financial data
such as salaries and bonuses is often considered confidential, and only autho-
rized persons are allowed to access such data. In addition, some users may only
be permitted to retrieve data, whereas others are allowed to retrieve and update.
Hence, the type of access operation—retrieval or update—must also be con-
trolled. Typically, users or user groups are given account numbers protected by
passwords, which they can use to gain access to the database. A DBMS should
provide a security and authorization subsystem, which the DBA uses to create
accounts and to specify account restrictions. Then, the DBMS should enforce
these restrictions automatically. Notice that we can apply similar controls to the
DBMS software. For example, only the DBA’s staff may be allowed to use certain
privileged software, such as the software for creating new accounts. Similarly,
parametric users may be allowed to access the database only through the pre-
defined apps or canned transactions developed for their use. We discuss data-
base security and authorization in Chapter 30.

1.6.3 Providing Persistent Storage for Program Objects

Databases can be used to provide persistent storage for program objects and data
structures. This is one of the main reasons for object-oriented database systems
(see Chapter 12). Programming languages typically have complex data structures,
such as structs or class definitions in C++ or Java. The values of program variables
or objects are discarded once a program terminates, unless the programmer explic-
itly stores them in permanent files, which often involves converting these complex
structures into a format suitable for file storage. When the need arises to read this
data once more, the programmer must convert from the file format to the program
variable or object structure. Object-oriented database systems are compatible with
programming languages such as C++ and Java, and the DBMS software auto-
matically performs any necessary conversions. Hence, a complex object in C++
can be stored permanently in an object-oriented DBMS. Such an object is said to
be persistent, since it survives the termination of program execution and can
later be directly retrieved by another program.
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The persistent storage of program objects and data structures is an important func-
tion of database systems. Traditional database systems often suffered from the so-
called impedance mismatch problem, since the data structures provided by the
DBMS were incompatible with the programming language’s data structures.
Object-oriented database systems typically offer data structure compatibility with
one or more object-oriented programming languages.

1.6.4 Providing Storage Structures and Search
Techniques for Efficient Query Processing

Database systems must provide capabilities for efficiently executing queries and
updates. Because the database is typically stored on disk, the DBMS must provide
specialized data structures and search techniques to speed up disk search for the
desired records. Auxiliary files called indexes are often used for this purpose.
Indexes are typically based on tree data structures or hash data structures that are
suitably modified for disk search. In order to process the database records needed
by a particular query, those records must be copied from disk to main memory.
Therefore, the DBMS often has a buffering or caching module that maintains parts
of the database in main memory buffers. In general, the operating system is respon-
sible for disk-to-memory buffering. However, because data buffering is crucial to
the DBMS performance, most DBMSs do their own data buffering.

The query processing and optimization module of the DBMS is responsible for
choosing an efficient query execution plan for each query based on the existing
storage structures. The choice of which indexes to create and maintain is part of
physical database design and tuning, which is one of the responsibilities of the DBA
staff. We discuss query processing and optimization in Part 8 of the text.

1.6.5 Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software failures.
The backup and recovery subsystem of the DBMS is responsible for recovery. For
example, if the computer system fails in the middle of a complex update transac-
tion, the recovery subsystem is responsible for making sure that the database is
restored to the state it was in before the transaction started executing. Disk backup
is also necessary in case of a catastrophic disk failure. We discuss recovery and
backup in Chapter 22.

1.6.6 Providing Multiple User Interfaces

Because many types of users with varying levels of technical knowledge use a data-
base, a DBMS should provide a variety of user interfaces. These include apps for
mobile users, query languages for casual users, programming language interfaces
for application programmers, forms and command codes for parametric users,
and menu-driven interfaces and natural language interfaces for standalone users.
Both forms-style interfaces and menu-driven interfaces are commonly known as
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graphical user interfaces (GUIs). Many specialized languages and environments
exist for specifying GUIs. Capabilities for providing Web GUI interfaces to a
database—or Web-enabling a database—are also quite common.

1.6.7 Representing Complex Relationships among Data

A database may include numerous varieties of data that are interrelated in many
ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the
STUDENT file is related to four records in the GRADE_REPORT file. Similarly,
each section record is related to one course record and to a number of
GRADE_REPORT records—one for each student who completed that section. A
DBMS must have the capability to represent a variety of complex relationships
among the data, to define new relationships as they arise, and to retrieve and
update related data easily and efficiently.

1.6.8 Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must hold for
the data. A DBMS should provide capabilities for defining and enforcing these
constraints. The simplest type of integrity constraint involves specifying a data
type for each data item. For example, in Figure 1.3, we specified that the value of
the Class data item within each STUDENT record must be a one-digit integer and
that the value of Name must be a string of no more than 30 alphabetic characters.
To restrict the value of Class between 1 and 5 would be an additional constraint
that is not shown in the current catalog. A more complex type of constraint that
frequently occurs involves specifying that a record in one file must be related to
records in other files. For example, in Figure 1.2, we can specify that every section
record must be related to a course record. This is known as a referential integrity
constraint. Another type of constraint specifies uniqueness on data item values,
such as every course record must have a unique value for Course_number. This is
known as a key or uniqueness constraint. These constraints are derived from the
meaning or semantics of the data and of the miniworld it represents. It is the
responsibility of the database designers to identify integrity constraints during
database design. Some constraints can be specified to the DBMS and automatically
enforced. Other constraints may have to be checked by update programs or at the
time of data entry. For typical large applications, it is customary to call such con-
straints business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-
straints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered
in the database, the DBMS cannot discover this error automatically because ‘C’ is a
valid value for the Grade data type. Such data entry errors can only be discovered
manually (when the student receives the grade and complains) and corrected later
by updating the database. However, a grade of “Z’ would be rejected automatically
by the DBMS because Z’ is not a valid value for the Grade data type. When we dis-
cuss each data model in subsequent chapters, we will introduce rules that pertain to
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that model implicitly. For example, in the Entity-Relationship model in Chapter 3,
a relationship must involve at least two entities. Rules that pertain to a specific data
model are called inherent rules of the data model.

1.6.9 Permitting Inferencing and Actions
Using Rules and Triggers

Some database systems provide capabilities for defining deduction rules for infer-
encing new information from the stored database facts. Such systems are called
deductive database systems. For example, there may be complex rules in the mini-
world application for determining when a student is on probation. These can be
specified declaratively as rules, which when compiled and maintained by the DBMS
can determine all students on probation. In a traditional DBMS, an explicit proce-
dural program code would have to be written to support such applications. But if
the miniworld rules change, it is generally more convenient to change the declared
deduction rules than to recode procedural programs. In today’s relational database
systems, it is possible to associate triggers with tables. A trigger is a form of a rule
activated by updates to the table, which results in performing some additional oper-
ations to some other tables, sending messages, and so on. More involved proce-
dures to enforce rules are popularly called stored procedures; they become a part of
the overall database definition and are invoked appropriately when certain condi-
tions are met. More powerful functionality is provided by active database systems,
which provide active rules that can automatically initiate actions when certain
events and conditions occur (see Chapter 26 for introductions to active databases in
Section 26.1 and deductive databases in Section 26.5).

1.6.10 Additional Implications of Using
the Database Approach

This section discusses a few additional implications of using the database approach
that can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to
define and enforce standards among database users in a large organization. This facil-
itates communication and cooperation among various departments, projects, and
users within the organization. Standards can be defined for names and formats of
data elements, display formats, report structures, terminology, and so on. The DBA
can enforce standards in a centralized database environment more easily than in an
environment where each user group has control of its own data files and software.

Reduced Application Development Time. A prime selling feature of the data-
base approach is that developing a new application—such as the retrieval of certain
data from the database for printing a new report—takes very little time. Designing
and implementing a large multiuser database from scratch may take more time
than writing a single specialized file application. However, once a database is up
and running, substantially less time is generally required to create new applications
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using DBMS facilities. Development time using a DBMS is estimated to be one-
sixth to one-fourth of that for a file system.

Flexibility. It may be necessary to change the structure of a database as require-
ments change. For example, a new user group may emerge that needs information
not currently in the database. In response, it may be necessary to add a file to the
database or to extend the data elements in an existing file. Modern DBMSs allow
certain types of evolutionary changes to the structure of the database without affect-
ing the stored data and the existing application programs.

Availability of Up-to-Date Information. A DBMS makes the database available
to all users. As soon as one user’s update is applied to the database, all other users
can immediately see this update. This availability of up-to-date information is
essential for many transaction-processing applications, such as reservation systems
or banking databases, and it is made possible by the concurrency control and recov-
ery subsystems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and
applications, thus reducing the amount of wasteful overlap between activities of
data-processing personnel in different projects or departments as well as redundan-
cies among applications. This enables the whole organization to invest in more
powerful processors, storage devices, or networking gear, rather than having each
department purchase its own (lower performance) equipment. This reduces overall
costs of operation and management.

1.7 A Brief History of Database Applications

We now give a brief historical overview of the applications that use DBMSs and
how these applications provided the impetus for new types of database systems.

1.7.1 Early Database Applications Using Hierarchical
and Network Systems

Many early database applications maintained records in large organizations such as
corporations, universities, hospitals, and banks. In many of these applications,
there were large numbers of records of similar structure. For example, in a univer-
sity application, similar information would be kept for each student, each course,
each grade record, and so on. There were also many types of records and many
interrelationships among them.

One of the main problems with early database systems was the intermixing of con-
ceptual relationships with the physical storage and placement of records on disk.
Hence, these systems did not provide sufficient data abstraction and program-data
independence capabilities. For example, the grade records of a particular student
could be physically stored next to the student record. Although this provided very
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efficient access for the original queries and transactions that the database was
designed to handle, it did not provide enough flexibility to access records efficiently
when new queries and transactions were identified. In particular, new queries that
required a different storage organization for efficient processing were quite difficult
to implement efficiently. It was also laborious to reorganize the database when
changes were made to the application’s requirements.

Another shortcoming of early systems was that they provided only programming
language interfaces. This made it time-consuming and expensive to implement
new queries and transactions, since new programs had to be written, tested, and
debugged. Most of these database systems were implemented on large and
expensive mainframe computers starting in the mid-1960s and continuing
through the 1970s and 1980s. The main types of early systems were based on
three main paradigms: hierarchical systems, network model-based systems, and
inverted file systems.

1.7.2 Providing Data Abstraction and Application Flexibility
with Relational Databases

Relational databases were originally proposed to separate the physical storage of
data from its conceptual representation and to provide a mathematical foundation
for data representation and querying. The relational data model also introduced
high-level query languages that provided an alternative to programming language
interfaces, making it much faster to write new queries. Relational representation of
data somewhat resembles the example we presented in Figure 1.2. Relational sys-
tems were initially targeted to the same applications as earlier systems, and pro-
vided flexibility to develop new queries quickly and to reorganize the database as
requirements changed. Hence, data abstraction and program-data independence
were much improved when compared to earlier systems.

Early experimental relational systems developed in the late 1970s and the com-
mercial relational database management systems (RDBMS) introduced in the
early 1980s were quite slow, since they did not use physical storage pointers or
record placement to access related data records. With the development of new
storage and indexing techniques and better query processing and optimization,
their performance improved. Eventually, relational databases became the domi-
nant type of database system for traditional database applications. Relational data-
bases now exist on almost all types of computers, from small personal computers
to large servers.

1.7.3 Object-Oriented Applications and the Need
for More Complex Databases
The emergence of object-oriented programming languages in the 1980s and the

need to store and share complex, structured objects led to the development of
object-oriented databases (OODBs). Initially, OODBs were considered a competitor
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to relational databases, since they provided more general data structures. They also
incorporated many of the useful object-oriented paradigms, such as abstract data
types, encapsulation of operations, inheritance, and object identity. However, the
complexity of the model and the lack of an early standard contributed to their lim-
ited use. They are now mainly used in specialized applications, such as engineering
design, multimedia publishing, and manufacturing systems. Despite expectations
that they will make a big impact, their overall penetration into the database prod-
ucts market remains low. In addition, many object-oriented concepts were incor-
porated into the newer versions of relational DBMSs, leading to object-relational
database management systems, known as ORDBMSs.

1.7.4 Interchanging Data on the Web
for E-Commerce Using XML

The World Wide Web provides a large network of interconnected computers.
Users can create static Web pages using a Web publishing language, such as Hyper-
Text Markup Language (HTML), and store these documents on Web servers where
other users (clients) can access them and view them through Web browsers. Docu-
ments can be linked through hyperlinks, which are pointers to other documents.
Starting in the 1990s, electronic commerce (e-commerce) emerged as a major
application on the Web. Much of the critical information on e-commerce Web
pages is dynamically extracted data from DBMSs, such as flight information, prod-
uct prices, and product availability. A variety of techniques were developed to allow
the interchange of dynamically extracted data on the Web for display on Web
pages. The eXtended Markup Language (XML) is one standard for interchanging
data among various types of databases and Web pages. XML combines concepts
from the models used in document systems with database modeling concepts.
Chapter 13 is devoted to an overview of XML.

1.7.5 Extending Database Capabilities
for New Applications

The success of database systems in traditional applications encouraged devel-
opers of other types of applications to attempt to use them. Such applications
traditionally used their own specialized software and file and data structures.
Database systems now offer extensions to better support the specialized require-
ments for some of these applications. The following are some examples of these
applications:

m Scientific applications that store large amounts of data resulting from scien-
tific experiments in areas such as high-energy physics, the mapping of the
human genome, and the discovery of protein structures

m Storage and retrieval of images, including scanned news or personal photo-
graphs, satellite photographic images, and images from medical procedures
such as x-rays and MRI (magnetic resonance imaging) tests
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m Storage and retrieval of videos, such as movies, and video clips from news
or personal digital cameras

= Data mining applications that analyze large amounts of data to search for
the occurrences of specific patterns or relationships, and for identifying
unusual patterns in areas such as credit card fraud detection

m Spatial applications that store and analyze spatial locations of data, such as
weather information, maps used in geographical information systems, and
automobile navigational systems

B Time series applications that store information such as economic data at
regular points in time, such as daily sales and monthly gross national
product figures

It was quickly apparent that basic relational systems were not very suitable for many
of these applications, usually for one or more of the following reasons:

B More complex data structures were needed for modeling the application
than the simple relational representation.

® New data types were needed in addition to the basic numeric and character
string types.

u New operations and query language constructs were necessary to manipu-
late the new data types.

B New storage and indexing structures were needed for efficient searching on
the new data types.

This led DBMS developers to add functionality to their systems. Some functionality
was general purpose, such as incorporating concepts from object-oriented data-
bases into relational systems. Other functionality was special purpose, in the form
of optional modules that could be used for specific applications. For example, users
could buy a time series module to use with their relational DBMS for their time
series application.

1.7.6 Emergence of Big Data Storage Systems
and NOSQL Databases

In the first decade of the twenty-first century, the proliferation of applications and
platforms such as social media Web sites, large e-commerce companies, Web search
indexes, and cloud storage/backup led to a surge in the amount of data stored on
large databases and massive servers. New types of database systems were necessary
to manage these huge databases—systems that would provide fast search and
retrieval as well as reliable and safe storage of nontraditional types of data, such as
social media posts and tweets. Some of the requirements of these new systems were
not compatible with SQL relational DBMSs (SQL is the standard data model and
language for relational databases). The term NOSQL is generally interpreted as Not
Only SQL, meaning that in systems than manage large amounts of data, some of the
data is stored using SQL systems, whereas other data would be stored using NOSQL,
depending on the application requirements.



1.8 When Not to Use a DBMS

In spite of the advantages of using a DBMS, there are a few situations in which a
DBMS may involve unnecessary overhead costs that would not be incurred in
traditional file processing. The overhead costs of using a DBMS are due to the
following:

B High initial investment in hardware, software, and training
B The generality that a DBMS provides for defining and processing data

B Overhead for providing security, concurrency control, recovery, and integ-
rity functions

Therefore, it may be more desirable to develop customized database applications
under the following circumstances:

m Simple, well-defined database applications that are not expected to change
atall

m Stringent, real-time requirements for some application programs that may
not be met because of DBMS overhead

B Embedded systems with limited storage capacity, where a general-purpose
DBMS would not fit

B No multiple-user access to data

Certain industries and applications have elected not to use general-purpose
DBMSs. For example, many computer-aided design (CAD) tools used by mechan-
ical and civil engineers have proprietary file and data management software that
is geared for the internal manipulations of drawings and 3D objects. Similarly,
communication and switching systems designed by companies like AT&T were
early manifestations of database software that was made to run very fast with
hierarchically organized data for quick access and routing of calls. GIS imple-
mentations often implement their own data organization schemes for efficiently
implementing functions related to processing maps, physical contours, lines,
polygons, and so on.

1.9 Summary

In this chapter we defined a database as a collection of related data, where data
means recorded facts. A typical database represents some aspect of the real world
and is used for specific purposes by one or more groups of users. A DBMS is a
generalized software package for implementing and maintaining a computerized
database. The database and software together form a database system. We identi-
fied several characteristics that distinguish the database approach from traditional
file-processing applications, and we discussed the main categories of database
users, or the actors on the scene. We noted that in addition to database users, there
are several categories of support personnel, or workers behind the scene, in a data-
base environment.

1.9 Summary
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We presented a list of capabilities that should be provided by the DBMS software to
the DBA, database designers, and end users to help them design, administer, and
use a database. Then we gave a brief historical perspective on the evolution of data-
base applications. We pointed out the recent rapid growth of the amounts and types
of data that must be stored in databases, and we discussed the emergence of new
systems for handling “big data” applications. Finally, we discussed the overhead
costs of using a DBMS and discussed some situations in which it may not be advan-
tageous to use one.

Review Questions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.
1.7.

Define the following terms: data, database, DBMS, database system, data-
base catalog, program-data independence, user view, DBA, end user, canned
transaction, deductive database system, persistent object, meta-data, and
transaction-processing application.

What four main types of actions involve databases? Briefly discuss each.

Discuss the main characteristics of the database approach and how it differs
from traditional file systems.

What are the responsibilities of the DBA and the database designers?

What are the different types of database end users? Discuss the main activi-
ties of each.

Discuss the capabilities that should be provided by a DBMS.

Discuss the differences between database systems and information retrieval
systems.

Exercises

1.8.

1.9.

Identify some informal queries and update operations that you would expect
to apply to the database shown in Figure 1.2.

What is the difference between controlled and uncontrolled redundancy?
Mlustrate with examples.

. Specify all the relationships among the records of the database shown in

Figure 1.2.

. Give some additional views that may be needed by other user groups for the

database shown in Figure 1.2.

. Cite some examples of integrity constraints that you think can apply to the

database shown in Figure 1.2.

. Give examples of systems in which it may make sense to use traditional file

processing instead of a database approach.
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1.14. Consider Figure 1.2.

a. If the name of the ‘CS’ (Computer Science) Department changes to ‘CSSE’
(Computer Science and Software Engineering) Department and the cor-
responding prefix for the course number also changes, identify the col-
umns in the database that would need to be updated.

b. Can you restructure the columns in the COURSE, SECTION, and
PREREQUISITE tables so that only one column will need to be updated?

Selected Bibliography

The October 1991 issue of Communications of the ACM and Kim (1995) include
several articles describing next-generation DBMSs; many of the database features
discussed in the former are now commercially available. The March 1976 issue of
ACM Computing Surveys offers an early introduction to database systems and may
provide a historical perspective for the interested reader. We will include references
to other concepts, systems, and applications introduced in this chapter in the later
text chapters that discuss each topic in more detail.
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chapter —

Database System Concepts
and Architecture

The architecture of DBMS packages has evolved
from the early monolithic systems, where the whole
DBMS software package was one tightly integrated system, to the modern DBMS
packages that are modular in design, with a client/server system architecture. The
recent growth in the amount of data requiring storage has led to database systems
with distributed architectures comprised of thousands of computers that manage
the data stores. This evolution mirrors the trends in computing, where large cen-
tralized mainframe computers are replaced by hundreds of distributed worksta-
tions and personal computers connected via communications networks to various
types of server machines—Web servers, database servers, file servers, application
servers, and so on. The current cloud computing environments consist of thou-
sands of large servers managing so-called big data for users on the Web.

In a basic client/server DBMS architecture, the system functionality is distributed
between two types of modules.! A client module is typically designed so that it
will run on a mobile device, user workstation, or personal computer (PC). Typi-
cally, application programs and user interfaces that access the database run in the
client module. Hence, the client module handles user interaction and provides
the user-friendly interfaces such as apps for mobile devices, or forms- or menu-
based GUISs (graphical user interfaces) for PCs. The other kind of module, called
a server module, typically handles data storage, access, search, and other func-
tions. We discuss client/server architectures in more detail in Section 2.5. First,
we must study more basic concepts that will give us a better understanding of
modern database architectures.

'As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.
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In this chapter we present the terminology and basic concepts that will be used
throughout the text. Section 2.1 discusses data models and defines the concepts
of schemas and instances, which are fundamental to the study of database sys-
tems. We discuss the three-schema DBMS architecture and data independence
in Section 2.2; this provides a user’s perspective on what a DBMS is supposed to
do. In Section 2.3 we describe the types of interfaces and languages that are typi-
cally provided by a DBMS. Section 2.4 discusses the database system software
environment. Section 2.5 gives an overview of various types of client/server
architectures. Finally, Section 2.6 presents a classification of the types of DBMS
packages. Section 2.7 summarizes the chapter.

The material in Sections 2.4 through 2.6 provides detailed concepts that may be
considered as supplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some
level of data abstraction. Data abstraction generally refers to the suppression of
details of data organization and storage, and the highlighting of the essential fea-
tures for an improved understanding of data. One of the main characteristics of the
database approach is to support data abstraction so that different users can perceive
data at their preferred level of detail. A data model—a collection of concepts that
can be used to describe the structure of a database—provides the necessary means
to achieve this abstraction.” By structure of a database we mean the data types, rela-
tionships, and constraints that apply to the data. Most data models also include a
set of basic operations for specifying retrievals and updates on the database.

In addition to the basic operations provided by the data model, it is becoming more
common to include concepts in the data model to specify the dynamic aspect or
behavior of a database application. This allows the database designer to specify a set
of valid user-defined operations that are allowed on the database objects.> An
example of a user-defined operation could be COMPUTE_GPA, which can be
applied to a STUDENT object. On the other hand, generic operations to insert,
delete, modify, or retrieve any kind of object are often included in the basic data
model operations. Concepts to specify behavior are fundamental to object-oriented
data models (see Chapter 12) but are also being incorporated in more traditional
data models. For example, object-relational models (see Chapter 12) extend the basic
relational model to include such concepts, among others. In the basic relational data
model, there is a provision to attach behavior to the relations in the form of persis-
tent stored modules, popularly known as stored procedures (see Chapter 10).

?Sometimes the word model is used to denote a specific database description, or schema—for example,
the marketing data model. We will not use this interpretation.

SThe inclusion of concepts to describe behavior reflects a trend whereby database design and software
design activities are increasingly being combined into a single activity. Traditionally, specifying behavior is
associated with software design.
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2.1.1 Categories of Data Models

Many data models have been proposed, which we can categorize according to
the types of concepts they use to describe the database structure. High-level or
conceptual data models provide concepts that are close to the way many users per-
ceive data, whereas low-level or physical data models provide concepts that describe
the details of how data is stored on the computer storage media, typically magnetic
disks. Concepts provided by physical data models are generally meant for computer
specialists, not for end users. Between these two extremes is a class of representational
(or implementation) data models,* which provide concepts that may be easily
understood by end users but that are not too far removed from the way data is orga-
nized in computer storage. Representational data models hide many details of data
storage on disk but can be implemented on a computer system directly.

Conceptual data models use concepts such as entities, attributes, and relationships.
An entity represents a real-world object or concept, such as an employee or a project
from the miniworld that is described in the database. An attribute represents some
property of interest that further describes an entity, such as the employee’s name or
salary. A relationship among two or more entities represents an association among
the entities, for example, a works-on relationship between an employee and a
project. Chapter 3 presents the entity-relationship model—a popular high-level
conceptual data model. Chapter 4 describes additional abstractions used for advanced
modeling, such as generalization, specialization, and categories (union types).

Representational or implementation data models are the models used most fre-
quently in traditional commercial DBMSs. These include the widely used relational
data model, as well as the so-called legacy data models—the network and
hierarchical models—that have been widely used in the past. Part 3 of the text is
devoted to the relational data model, and its constraints, operations, and languages.
The SQL standard for relational databases is described in Chapters 6 and 7. Repre-
sentational data models represent data by using record structures and hence are
sometimes called record-based data models.

We can regard the object data model as an example of a new family of higher-level
implementation data models that are closer to conceptual data models. A standard
for object databases called the ODMG object model has been proposed by the
Object Data Management Group (ODMG). We describe the general characteristics
of object databases and the object model proposed standard in Chapter 12. Object
data models are also frequently utilized as high-level conceptual models, particu-
larly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by repre-
senting information such as record formats, record orderings, and access paths. An

“The term implementation data model is not a standard term; we have introduced it to refer to the avail-
able data models in commercial database systems.

SA summary of the hierarchical and network data models is included in Appendices D and E. They are
accessible from the book’s Web site.
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access path is a search structure that makes the search for particular database
records efficient, such as indexing or hashing. We discuss physical storage tech-
niques and access structures in Chapters 16 and 17. An index is an example of an
access path that allows direct access to data using an index term or a keyword. It is
similar to the index at the end of this text, except that it may be organized in a lin-
ear, hierarchical (tree-structured), or some other fashion.

Another class of data models is known as self-describing data models. The data
storage in systems based on these models combines the description of the data with
the data values themselves. In traditional DBMSs, the description (schema) is sepa-
rated from the data. These models include XML (see Chapter 12) as well as many of
the key-value stores and NOSQL systems (see Chapter 24) that were recently cre-
ated for managing big data.

2.1.2 Schemas, Instances, and Database State

In a data model, it is important to distinguish between the description of the
database and the database itself. The description of a database is called the
database schema, which is specified during database design and is not expected
to change frequently.® Most data models have certain conventions for displaying
schemas as diagrams.” A displayed schema is called a schema diagram. Figure 2.1
shows a schema diagram for the database shown in Figure 1.2; the diagram dis-
plays the structure of each record type but not the actual instances of records.

Figure 2.1

Schema diagram for
the database in
Figure 1.2.

STUDENT
| Name |Student_number | Class | Major |

COURSE
| Course_name | Course_number | Credit_hours| Department

PREREQUISITE
| Course_number | Prerequisite_number |

SECTION
| Section_identifier| Course_number | Semester | Year | Instructor

GRADE_REPORT
| Student_number | Section_identifier| Grade |

6Schema changes are usually needed as the requirements of the database applications change. Most
database systems include operations for allowing schema changes.

"Itis customary in database parlance to use schemas as the plural for schema, even though schemata is
the proper plural form. The word scheme is also sometimes used to refer to a schema.
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We call each object in the schema—such as STUDENT or COURSE—a schema
construct.

A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints. Other aspects are not
specified in the schema diagram; for example, Figure 2.1 shows neither the data
type of each data item nor the relationships among the various files. Many types of
constraints are not represented in schema diagrams. A constraint such as students
majoring in computer science must take CS1310 before the end of their sophomore
year is quite difficult to represent diagrammatically.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a new student or enter a new
grade. The data in the database at a particular moment in time is called a database
state or snapshot. It is also called the current set of occurrences or instances in
the database. In a given database state, each schema construct has its own current
set of instances; for example, the STUDENT construct will contain the set of indi-
vidual student entities (records) as its instances. Many database states can be con-
structed to correspond to a particular database schema. Every time we insert or
delete a record or change the value of a data item in a record, we change one state
of the database into another state.

The distinction between database schema and database state is very important.
When we define a new database, we specify its database schema only to the
DBMS. At this point, the corresponding database state is the empty state with
no data. We get the initial state of the database when the database is first
populated or loaded with the initial data. From then on, every time an update
operation is applied to the database, we get another database state. At any point
in time, the database has a current state.® The DBMS is partly responsible for
ensuring that every state of the database is a valid state—that is, a state that
satisfies the structure and constraints specified in the schema. Hence, specify-
ing a correct schema to the DBMS is extremely important and the schema must
be designed with utmost care. The DBMS stores the descriptions of the schema
constructs and constraints—also called the meta-data—in the DBMS catalog so
that DBMS software can refer to the schema whenever it needs to. The schema
is sometimes called the intension, and a database state is called an extension of
the schema.

Although, as mentioned earlier, the schema is not supposed to change frequently,
it is not uncommon that changes occasionally need to be applied to the schema as
the application requirements change. For example, we may decide that another
data item needs to be stored for each record in a file, such as adding the Date_of_birth
to the STUDENT schema in Figure 2.1. This is known as schema evolution. Most
modern DBMSs include some operations for schema evolution that can be applied
while the database is operational.

8The current state is also called the current snapshot of the database. It has also been called a database
instance, but we prefer to use the term instance to refer to individual records.
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2.2 Three-Schema Architecture
and Data Independence

Three of the four important characteristics of the database approach, listed in
Section 1.3, are (1) use of a catalog to store the database description (schema) so
as to make it self-describing, (2) insulation of programs and data (program-data
and program-operation independence), and (3) support of multiple user views.
In this section we specify an architecture for database systems, called the
three-schema architecture,’ that was proposed to help achieve and visualize
these characteristics. Then we discuss further the concept of data independence.

2.2.1 The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate
the user applications from the physical database. In this architecture, schemas can
be defined at the following three levels:

1. The internal level has an internal schema, which describes the physical
storage structure of the database. The internal schema uses a physical data
model and describes the complete details of data storage and access paths for

the database.
Figure 2.2
The three-schema End Users
architecture.
External Level Extgrnal Ce Extgrnal
View View
External/Conceptual
Mapping
Conceptual Level Conceptual Schema
A
Conceptual/Internal
Maobi
apping Y
Internal Level Internal Schema

EﬁEﬁEﬁ

Stored Database

9This is also known as the ANSI/SPARC (American National Standards Institute/ Standards Planning
And Requirements Committee) architecture, after the committee that proposed it (Tsichritzis & Klug, 1978).
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2. The conceptual level has a conceptual schema, which describes the structure
of the whole database for a community of users. The conceptual schema hides
the details of physical storage structures and concentrates on describing enti-
ties, data types, relationships, user operations, and constraints. Usually, a rep-
resentational data model is used to describe the conceptual schema when a
database system is implemented. This implementation conceptual schema is
often based on a conceptual schema design in a high-level data model.

3. The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that
user group. As in the previous level, each external schema is typically imple-
mented using a representational data model, possibly based on an external
schema design in a high-level conceptual data model.

The three-schema architecture is a convenient tool with which the user can visual-
ize the schema levels in a database system. Most DBMSs do not separate the three
levels completely and explicitly, but they support the three-schema architecture to
some extent. Some older DBMSs may include physical-level details in the concep-
tual schema. The three-level ANSI architecture has an important place in database
technology development because it clearly separates the users’ external level, the
database’s conceptual level, and the internal storage level for designing a database.
It is very much applicable in the design of DBMSs, even today. In most DBMSs that
support user views, external schemas are specified in the same data model that
describes the conceptual-level information (for example, a relational DBMS like
Oracle or SQLServer uses SQL for this).

Notice that the three schemas are only descriptions of data; the actual data is stored
at the physical level only. In the three-schema architecture, each user group refers
to its own external schema. Hence, the DBMS must transform a request specified
on an external schema into a request against the conceptual schema, and then into
a request on the internal schema for processing over the stored database. If the
request is a database retrieval, the data extracted from the stored database must be
reformatted to match the user’s external view. The processes of transforming
requests and results between levels are called mappings. These mappings may be
time-consuming, so some DBMSs—especially those that are meant to support small
databases—do not support external views. Even in such systems, however, it is nec-
essary to transform requests between the conceptual and internal levels.

2.2.2 Data Independence

The three-schema architecture can be used to further explain the concept of data
independence, which can be defined as the capacity to change the schema at one
level of a database system without having to change the schema at the next higher
level. We can define two types of data independence:

1. Logical data independence is the capacity to change the conceptual schema
without having to change external schemas or application programs. We
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may change the conceptual schema to expand the database (by adding a
record type or data item), to change constraints, or to reduce the database
(by removing a record type or data item). In the last case, external schemas
that refer only to the remaining data should not be affected. For example,
the external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one
shown in Figure 1.6(a). Only the view definition and the mappings need to
be changed in a DBMS that supports logical data independence. After the
conceptual schema undergoes a logical reorganization, application pro-
grams that reference the external schema constructs must work as before.
Changes to constraints can be applied to the conceptual schema without
affecting the external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema
without having to change the conceptual schema. Hence, the external sche-
mas need not be changed as well. Changes to the internal schema may be
needed because some physical files were reorganized—for example, by cre-
ating additional access structures—to improve the performance of retrieval
or update. If the same data as before remains in the database, we should not
have to change the conceptual schema. For example, providing an access
path to improve retrieval speed of SECTION records (Figure 1.2) by semes-
ter and year should not require a query such as list all sections offered in fall
2008 to be changed, although the query would be executed more efficiently
by the DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environ-
ments where physical details, such as the exact location of data on disk, and hard-
ware details of storage encoding, placement, compression, splitting, merging of
records, and so on are hidden from the user. Applications remain unaware of these
details. On the other hand, logical data independence is harder to achieve because it
allows structural and constraint changes without affecting application programs—a
much stricter requirement.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include
information on how to map requests and data among the various levels. The DBMS
uses additional software to accomplish these mappings by referring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at the next higher level remains unchanged; only
the mapping between the two levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

2.3 Database Languages and Interfaces

In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS
must provide appropriate languages and interfaces for each category of users. In
this section we discuss the types of languages and interfaces provided by a DBMS
and the user categories targeted by each interface.
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2.3.1 DBMS Languages

Once the design of a database is completed and a DBMS is chosen to implement the
database, the first step is to specify conceptual and internal schemas for the data-
base and any mappings between the two. In many DBMSs where no strict separa-
tion of levels is maintained, one language, called the data definition language
(DDL), is used by the DBA and by database designers to define both schemas. The
DBMS will have a DDL compiler whose function is to process DDL statements in
order to identify descriptions of the schema constructs and to store the schema
description in the DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and
internal levels, the DDL is used to specify the conceptual schema only. Another
language, the storage definition language (SDL), is used to specify the internal
schema. The mappings between the two schemas may be specified in either one of
these languages. In most relational DBMSs today, there is no specific language that
performs the role of SDL. Instead, the internal schema is specified by a combination
of functions, parameters, and specifications related to storage of files. These permit
the DBA staff to control indexing choices and mapping of data to storage. For a true
three-schema architecture, we would need a third language, the view definition
language (VDL), to specify user views and their mappings to the conceptual
schema, but in most DBMSs the DDL is used to define both conceptual and external
schemas. In relational DBMSs, SQL is used in the role of VDL to define user or
application views as results of predefined queries (see Chapters 6 and 7).

Once the database schemas are compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
vides a set of operations or a language called the data manipulation language
(DML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered dis-
tinct languages; rather, a comprehensive integrated language is used that includes
constructs for conceptual schema definition, view definition, and data manipula-
tion. Storage definition is typically kept separate, since it is used for defining physi-
cal storage structures to fine-tune the performance of the database system, which is
usually done by the DBA staff. A typical example of a comprehensive database lan-
guage is the SQL relational database language (see Chapters 6 and 7), which repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint
specification, schema evolution, and many other features. The SDL was a compo-
nent in early versions of SQL but has been removed from the language to keep it at
the conceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be
used on its own to specify complex database operations concisely. Many DBMSs
allow high-level DML statements either to be entered interactively from a display
monitor or terminal or to be embedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identified within the program so
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that they can be extracted by a precompiler and processed by the DBMS. A low-
level or procedural DML must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from
the database and processes each separately. Therefore, it needs to use programming
language constructs, such as looping, to retrieve and process each record from a set
of records. Low-level DMLs are also called record-at-a-time DMLs because of this
property. High-level DMLs, such as SQL, can specify and retrieve many records in
a single DML statement; therefore, they are called set-at-a-time or set-oriented
DMLs. A query in a high-level DML often specifies which data to retrieve rather
than how to retrieve it; therefore, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a
general-purpose programming language, that language is called the host language
and the DML is called the data sublanguage.'’ On the other hand, a high-level
DML used in a standalone interactive manner is called a query language. In gen-
eral, both retrieval and update commands of a high-level DML may be used inter-
actively and are hence considered part of the query language.'!

Casual end users typically use a high-level query language to specify their requests,
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usually are user-friendly interfaces for interacting with the data-
base; these can also be used by casual users or others who do not want to learn the
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-based Interfaces for Web Clients or Browsing. These interfaces pres-
ent the user with lists of options (called menus) that lead the user through the for-
mulation of a request. Menus do away with the need to memorize the specific
commands and syntax of a query language; rather, the query is composed step-by-
step by picking options from a menu that is displayed by the system. Pull-down
menus are a very popular technique in Web-based user interfaces. They are also
often used in browsing interfaces, which allow a user to look through the contents
of a database in an exploratory and unstructured manner.

Apps for Mobile Devices. These interfaces present mobile users with access to
their data. For example, banking, reservations, and insurance companies, among
many others, provide apps that allow users to access their data through a mobile
phone or mobile device. The apps have built-in programmed interfaces that typically

1%n object databases, the host and data sublanguages typically form one integrated language—for
example, C++ with some extensions to support database functionality. Some relational systems also
provide integrated languages—for example, Oracle’s PL/SQL.

" According to the English meaning of the word query, it should really be used to describe retrievals
only, not updates.
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allow users to login using their account name and password; the apps then provide
a limited menu of options for mobile access to the user data, as well as options such
as paying bills (for banks) or making reservations (for reservation Web sites).

Forms-based Interfaces. A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they can fill out only
certain entries, in which case the DBMS will retrieve matching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
faces to canned transactions. Many DBMSs have forms specification languages,
which are special languages that help programmers specify such forms. SQL*Forms
is a form-based language that specifies queries using a form designed in conjunc-
tion with the relational database schema. Oracle Forms is a component of the Ora-
cle product suite that provides an extensive set of features to design and build
applications using forms. Some systems have utilities that define a form by letting
the end user interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in dia-
grammatic form. The user then can specify a query by manipulating the diagram.
In many cases, GUIs utilize both menus and forms.

Natural Language Interfaces. These interfaces accept requests written in Eng-
lish or some other language and attempt to understand them. A natural language
interface usually has its own schema, which is similar to the database conceptual
schema, as well as a dictionary of important words. The natural language interface
refers to the words in its schema, as well as to the set of standard words in its dic-
tionary, that are used to interpret the request. If the interpretation is successful, the
interface generates a high-level query corresponding to the natural language request
and submits it to the DBMS for processing; otherwise, a dialogue is started with the
user to clarify the request.

Keyword-based Database Search. These are somewhat similar to Web search
engines, which accept strings of natural language (like English or Spanish) words
and match them with documents at specific sites (for local search engines) or Web
pages on the Web at large (for engines like Google or Ask). They use predefined
indexes on words and use ranking functions to retrieve and present resulting docu-
ments in a decreasing degree of match. Such “free form” textual query interfaces are
not yet common in structured relational databases, although a research area called
keyword-based querying has emerged recently for relational databases.

Speech Input and Output. Limited use of speech as an input query and speech
as an answer to a question or result of a request is becoming commonplace. Appli-
cations with limited vocabularies, such as inquiries for telephone directory, flight
arrival/departure, and credit card account information, are allowing speech for
input and output to enable customers to access this information. The speech input
is detected using a library of predefined words and used to set up the parameters
that are supplied to the queries. For output, a similar conversion from text or num-
bers into speech takes place.
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Interfaces for Parametric Users. Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. For example, a
teller is able to use single function keys to invoke routine and repetitive transactions
such as account deposits or withdrawals, or balance inquiries. Systems analysts and
programmers design and implement a special interface for each known class of
naive users. Usually a small set of abbreviated commands is included, with the goal
of minimizing the number of keystrokes required for each request.

Interfaces for the DBA. Most database systems contain privileged commands
that can be used only by the DBA staff. These include commands for creating
accounts, setting system parameters, granting account authorization, changing a
schema, and reorganizing the storage structures of a database.

2.4 The Database System Environment

A DBMS is a complex software system. In this section we discuss the types of soft-
ware components that constitute a DBMS and the types of computer system soft-
ware with which the DBMS interacts.

2.4.1 DBMS Component Modules

Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The
figure is divided into two parts. The top part of the figure refers to the various
users of the database environment and their interfaces. The lower part shows the
internal modules of the DBMS responsible for storage of data and processing of
transactions.

The database and the DBMS catalog are usually stored on disk. Access to the
disk is controlled primarily by the operating system (OS), which schedules disk
read/write. Many DBMSs have their own buffer management module to sched-
ule disk read/write, because management of buffer storage has a considerable
effect on performance. Reducing disk read/write improves performance consid-
erably. A higher-level stored data manager module of the DBMS controls access
to DBMS information that is stored on disk, whether it is part of the database or
the catalog.

Let us consider the top part of Figure 2.3 first. It shows interfaces for the DBA staff,
casual users who work with interactive interfaces to formulate queries, application
programmers who create programs using some host programming languages, and
parametric users who do data entry work by supplying parameters to predefined
transactions. The DBA staff works on defining the database and tuning it by mak-
ing changes to its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of files, names and data types of data items,
storage details of each file, mapping information among schemas, and constraints.
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Component modules of a DBMS and their interactions.

In addition, the catalog stores many other types of information that are needed by
the DBMS modules, which can then look up the catalog information as needed.

Casual users and persons with occasional need for information from the database
interact using the interactive query interface in Figure 2.3. We have not explicitly
shown any menu-based or form-based or mobile interactions that are typically used
to generate the interactive query automatically or to access canned transactions.
These queries are parsed and validated for correctness of the query syntax, the
names of files and data elements, and so on by a query compiler that compiles
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them into an internal form. This internal query is subjected to query optimization
(discussed in Chapters 18 and 19). Among other things, the query optimizer is
concerned with the rearrangement and possible reordering of operations, elimina-
tion of redundancies, and use of efficient search algorithms during execution. It
consults the system catalog for statistical and other physical information about the
stored data and generates executable code that performs the necessary operations
for the query and makes calls on the runtime processor.

Application programmers write programs in host languages such as Java, C, or C++
that are submitted to a precompiler. The precompiler extracts DML commands
from an application program written in a host programming language. These com-
mands are sent to the DML compiler for compilation into object code for database
access. The rest of the program is sent to the host language compiler. The object
codes for the DML commands and the rest of the program are linked, forming a
canned transaction whose executable code includes calls to the runtime database
processor. It is also becoming increasingly common to use scripting languages such
as PHP and Python to write database programs. Canned transactions are executed
repeatedly by parametric users via PCs or mobile apps; these users simply supply
the parameters to the transactions. Each execution is considered to be a separate
transaction. An example is a bank payment transaction where the account number,
payee, and amount may be supplied as parameters.

In the lower part of Figure 2.3, the runtime database processor executes (1) the
privileged commands, (2) the executable query plans, and (3) the canned transac-
tions with runtime parameters. It works with the system catalog and may update it
with statistics. It also works with the stored data manager, which in turn uses basic
operating system services for carrying out low-level input/output (read/write)
operations between the disk and main memory. The runtime database processor
handles other aspects of data transfer, such as management of buffers in the main
memory. Some DBMSs have their own buffer management module whereas others
depend on the OS for buffer management. We have shown concurrency control
and backup and recovery systems separately as a module in this figure. They are
integrated into the working of the runtime database processor for purposes of
transaction management.

It is common to have the client program that accesses the DBMS running on a
separate computer or device from the computer on which the database resides. The
former is called the client computer running DBMS client software and the latter is
called the database server. In many cases, the client accesses a middle computer,
called the application server, which in turn accesses the database server. We elabo-
rate on this topic in Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical
DBMS modules. The DBMS interacts with the operating system when disk accesses—
to the database or to the catalog—are needed. If the computer system is shared by
many users, the OS will schedule DBMS disk access requests and DBMS processing
along with other processes. On the other hand, if the computer system is mainly
dedicated to running the database server, the DBMS will control main memory
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buffering of disk pages. The DBMS also interfaces with compilers for general-
purpose host programming languages, and with application servers and client pro-
grams running on separate machines through the system network interface.

2.4.2 Database System Utilities

In addition to possessing the software modules just described, most DBMSs have
database utilities that help the DBA manage the database system. Common utili-
ties have the following types of functions:

B Loading. A loading utility is used to load existing data files—such as text
files or sequential files—into the database. Usually, the current (source) for-
mat of the data file and the desired (target) database file structure are speci-
fied to the utility, which then automatically reformats the data and stores it
in the database. With the proliferation of DBMSs, transferring data from
one DBMS to another is becoming common in many organizations. Some
vendors offer conversion tools that generate the appropriate loading pro-
grams, given the existing source and target database storage descriptions
(internal schemas).

® Backup. A backup utility creates a backup copy of the database, usually by
dumping the entire database onto tape or other mass storage medium. The
backup copy can be used to restore the database in case of catastrophic disk
failure. Incremental backups are also often used, where only changes since
the previous backup are recorded. Incremental backup is more complex, but
saves storage space.

= Database storage reorganization. This utility can be used to reorganize a
set of database files into different file organizations and create new access
paths to improve performance.

B Performance monitoring. Such a utility monitors database usage and pro-
vides statistics to the DBA. The DBA uses the statistics in making decisions
such as whether or not to reorganize files or whether to add or drop indexes
to improve performance.

Other utilities may be available for sorting files, handling data compression,
monitoring access by users, interfacing with the network, and performing other
functions.

2.4.3 Tools, Application Environments,
and Communications Facilities

Other tools are often available to database designers, users, and the DBMS. CASE
tools'? are used in the design phase of database systems. Another tool that can be
quite useful in large organizations is an expanded data dictionary (or data repository)

12Although CASE stands for computer-aided software engineering, many CASE tools are used primarily
for database design.
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system. In addition to storing catalog information about schemas and constraints,
the data dictionary stores other information, such as design decisions, usage stan-
dards, application program descriptions, and user information. Such a system is
also called an information repository. This information can be accessed directly by
users or the DBA when needed. A data dictionary utility is similar to the DBMS
catalog, but it includes a wider variety of information and is accessed mainly by
users rather than by the DBMS software.

Application development environments, such as PowerBuilder (Sybase)
or JBuilder (Borland), have been quite popular. These systems provide an environ-
ment for developing database applications and include facilities that help in many
facets of database systems, including database design, GUI development, querying
and updating, and application program development.

The DBMS also needs to interface with communications software, whose function
is to allow users at locations remote from the database system site to access the
database through computer terminals, workstations, or personal computers. These
are connected to the database site through data communications hardware such as
Internet routers, phone lines, long-haul networks, local networks, or satellite com-
munication devices. Many commercial database systems have communication
packages that work with the DBMS. The integrated DBMS and data communica-
tions system is called a DB/DC system. In addition, some distributed DBMSs are
physically distributed over multiple machines. In this case, communications net-
works are needed to connect the machines. These are often local area networks
(LANS), but they can also be other types of networks.

2.5 Centralized and Client/Server
Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture

Architectures for DBMSs have followed trends similar to those for general com-
puter system architectures. Older architectures used mainframe computers to pro-
vide the main processing for all system functions, including user application
programs and user interface programs, as well as all the DBMS functionality. The
reason was that in older systems, most users accessed the DBMS via computer ter-
minals that did not have processing power and only provided display capabilities.
Therefore, all processing was performed remotely on the computer system housing
the DBMS, and only display information and controls were sent from the computer
to the display terminals, which were connected to the central computer via various
types of communications networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations, and more recently with mobile devices. At first, database systems
used these computers similarly to how they had used display terminals, so that the
DBMS itself was still a centralized DBMS in which all the DBMS functionality,
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application program execution, and user interface processing were carried out on
one machine. Figure 2.4 illustrates the physical components in a centralized archi-
tecture. Gradually, DBMS systems started to exploit the available processing power
at the user side, which led to client/server DBMS architectures.

2.5.2 Basic Client/Server Architectures

First, we discuss client/server architecture in general; then we discuss how it is
applied to DBMSs. The client/server architecture was developed to deal with com-
puting environments in which a large number of PCs, workstations, file servers,
printers, database servers, Web servers, e-mail servers, and other software and
equipment are connected via a network. The idea is to define specialized servers
with specific functionalities. For example, it is possible to connect a number of PCs
or small workstations as clients to a file server that maintains the files of the client
machines. Another machine can be designated as a printer server by being con-
nected to various printers; all print requests by the clients are forwarded to this
machine. Web servers or e-mail servers also fall into the specialized server cate-
gory. The resources provided by specialized servers can be accessed by many client
machines. The client machines provide the user with the appropriate interfaces to
utilize these servers, as well as with local processing power to run local applications.
This concept can be carried over to other software packages, with specialized pro-
grams—such as a CAD (computer-aided design) package—being stored on specific
server machines and being made accessible to multiple clients. Figure 2.5 illustrates
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Figure 2.5
Logical two-tier
client/server
architecture.

| Client | | Client | | Client |
| | Network |
| |
Print File DBMS
Server Server Server

client/server architecture at the logical level; Figure 2.6 is a simplified diagram that
shows the physical architecture. Some machines would be client sites only (for
example, mobile devices or workstations/PCs that have only client software
installed). Other machines would be dedicated servers, and others would have both
client and server functionality.

The concept of client/server architecture assumes an underlying framework that
consists of many PCs/workstations and mobile devices as well as a smaller number
of server machines, connected via wireless networks or LANs and other types of
computer networks. A client in this framework is typically a user machine that pro-
vides user interface capabilities and local processing. When a client requires access
to additional functionality—such as database access—that does not exist at the cli-
ent, it connects to a server that provides the needed functionality. A server is a sys-
tem containing both hardware and software that can provide services to the client
machines, such as file access, printing, archiving, or database access. In general,
some machines install only client software, others only server software, and still
others may include both client and server software, as illustrated in Figure 2.6.
However, it is more common that client and server software usually run on separate

Figure 2.6
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machines. Two main types of basic DBMS architectures were created on this under-
lying client/server framework: two-tier and three-tier.'* We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs

In relational database management systems (RDBMSs), many of which started
as centralized systems, the system components that were first moved to the
client side were the user interface and application programs. Because SQL (see
Chapters 6 and 7) provided a standard language for RDBMSs, this created a
logical dividing point between client and server. Hence, the query and transac-
tion functionality related to SQL processing remained on the server side. In
such an architecture, the server is often called a query server or transaction
server because it provides these two functionalities. In an RDBMS, the server is
also often called an SQL server.

The user interface programs and application programs can run on the client side.
When DBMS access is required, the program establishes a connection to the
DBMS (which is on the server side); once the connection is created, the client
program can communicate with the DBMS. A standard called Open Database
Connectivity (ODBC) provides an application programming interface (API),
which allows client-side programs to call the DBMS, as long as both client and
server machines have the necessary software installed. Most DBMS vendors pro-
vide ODBC drivers for their systems. A client program can actually connect to
several RDBMSs and send query and transaction requests using the ODBC API,
which are then processed at the server sites. Any query results are sent back to the
client program, which can process and display the results as needed. A related
standard for the Java programming language, called JDBC, has also been defined.
This allows Java client programs to access one or more DBMSs through a stan-
dard interface.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing
systems. The emergence of the Web changed the roles of clients and servers, leading
to the three-tier architecture.

2.5.4 Three-Tier and n-Tier Architectures
for Web Applications
Many Web applications use an architecture called the three-tier architecture,

which adds an intermediate layer between the client and the database server, as
illustrated in Figure 2.7(a).

'3There are many other variations of client/server architectures. We discuss the two most basic ones
here.
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This intermediate layer or middle tier is called the application server or the Web
server, depending on the application. This server plays an intermediary role by
running application programs and storing business rules (procedures or con-
straints) that are used to access data from the database server. It can also improve
database security by checking a client’s credentials before forwarding a request to
the database server. Clients contain user interfaces and Web browsers. The inter-
mediate server accepts requests from the client, processes the request and sends
database queries and commands to the database server, and then acts as a conduit
for passing (partially) processed data from the database server to the clients, where
it may be processed further and filtered to be presented to the users. Thus, the user
interface, application rules, and data access act as the three tiers. Figure 2.7(b) shows
another view of the three-tier architecture used by database and other application
package vendors. The presentation layer displays information to the user and allows
data entry. The business logic layer handles intermediate rules and constraints before
data is passed up to the user or down to the DBMS. The bottom layer includes all
data management services. The middle layer can also act as a Web server, which
retrieves query results from the database server and formats them into dynamic
Web pages that are viewed by the Web browser at the client side. The client machine
is typically a PC or mobile device connected to the Web.

Other architectures have also been proposed. It is possible to divide the layers
between the user and the stored data further into finer components, thereby giving
rise to n-tier architectures, where n may be four or five tiers. Typically, the business
logic layer is divided into multiple layers. Besides distributing programming and
data throughout a network, n-tier applications afford the advantage that any one
tier can run on an appropriate processor or operating system platform and can be
handled independently. Vendors of ERP (enterprise resource planning) and CRM
(customer relationship management) packages often use a middleware layer, which
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accounts for the front-end modules (clients) communicating with a number of
back-end databases (servers).

Advances in encryption and decryption technology make it safer to transfer sensi-
tive data from server to client in encrypted form, where it will be decrypted. The
latter can be done by the hardware or by advanced software. This technology gives
higher levels of data security, but the network security issues remain a major con-
cern. Various technologies for data compression also help to transfer large amounts
of data from servers to clients over wired and wireless networks.

2.6 Classification of Database
Management Systems

Several criteria can be used to classify DBMSs. The first is the data model on
which the DBMS is based. The main data model used in many current commercial
DBMSs is the relational data model, and the systems based on this model are
known as SQL systems. The object data model has been implemented in some
commercial systems but has not had widespread use. Recently, so-called big data
systems, also known as key-value storage systems and NOSQL systems, use vari-
ous data models: document-based, graph-based, column-based, and key-value
data models. Many legacy applications still run on database systems based on the
hierarchical and network data models.

The relational DBMSs are evolving continuously, and, in particular, have been
incorporating many of the concepts that were developed in object databases. This
has led to a new class of DBMSs called object-relational DBMSs. We can catego-
rize DBMSs based on the data model: relational, object, object-relational, NOSQL,
key-value, hierarchical, network, and other.

Some experimental DBMSs are based on the XML (eXtended Markup Language)
model, which is a tree-structured data model. These have been called native XML
DBMSs. Several commercial relational DBMSs have added XML interfaces and
storage to their products.

The second criterion used to classify DBMSs is the number of users supported by
the system. Single-user systems support only one user at a time and are mostly
used with PCs. Multiuser systems, which include the majority of DBMSs, support
concurrent multiple users.

The third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized
DBMS can support multiple users, but the DBMS and the database reside totally at
a single computer site. A distributed DBMS (DDBMS) can have the actual database
and DBMS software distributed over many sites connected by a computer network.
Big data systems are often massively distributed, with hundreds of sites. The data is
often replicated on multiple sites so that failure of a site will not make some data
unavailable.
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Homogeneous DDBMSs use the same DBMS software at all the sites, whereas
heterogeneous DDBMSs can use different DBMS software at each site. It is also
possible to develop middleware software to access several autonomous preexisting
databases stored under heterogeneous DBMSs. This leads to a federated DBMS (or
multidatabase system), in which the participating DBMSs are loosely coupled and
have a degree of local autonomy. Many DDBMSs use client-server architecture, as
we described in Section 2.5.

The fourth criterion is cost. It is difficult to propose a classification of DBMSs
based on cost. Today we have open source (free) DBMS products like MySQL and
PostgreSQL that are supported by third-party vendors with additional services.
The main RDBMS products are available as free examination 30-day copy versions
as well as personal versions, which may cost under $100 and allow a fair amount of
functionality. The giant systems are being sold in modular form with components
to handle distribution, replication, parallel processing, mobile capability, and so
on, and with a large number of parameters that must be defined for the configura-
tion. Furthermore, they are sold in the form of licenses—site licenses allow unlim-
ited use of the database system with any number of copies running at the customer
site. Another type of license limits the number of concurrent users or the number
of user seats at a location. Standalone single-user versions of some systems like
Microsoft Access are sold per copy or included in the overall configuration of a
desktop or laptop. In addition, data warehousing and mining features, as well as
support for additional data types, are made available at extra cost. It is possible to
pay millions of dollars for the installation and maintenance of large database sys-
tems annually.

We can also classify a DBMS on the basis of the types of access path options for
storing files. One well-known family of DBMSs is based on inverted file structures.
Finally, a DBMS can be general purpose or special purpose. When performance is
a primary consideration, a special-purpose DBMS can be designed and built for a
specific application; such a system cannot be used for other applications without
major changes. Many airline reservations and telephone directory systems devel-
oped in the past are special-purpose DBMSs. These fall into the category of online
transaction processing (OLTP) systems, which must support a large number of
concurrent transactions without imposing excessive delays.

Let us briefly elaborate on the main criterion for classifying DBMSs: the data
model. The relational data model represents a database as a collection of tables,
where each table can be stored as a separate file. The database in Figure 1.2 resem-
bles a basic relational representation. Most relational databases use the high-level
query language called SQL and support a limited form of user views. We discuss
the relational model and its languages and operations in Chapters 5 through 8, and
techniques for programming relational applications in Chapters 10 and 11.

The object data model defines a database in terms of objects, their properties, and
their operations. Objects with the same structure and behavior belong to a class,
and classes are organized into hierarchies (or acyclic graphs). The operations of
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each class are specified in terms of predefined procedures called methods. Rela-
tional DBMSs have been extending their models to incorporate object database
concepts and other capabilities; these systems are referred to as object-relational or
extended relational systems. We discuss object databases and object-relational
systems in Chapter 12.

Big data systems are based on various data models, with the following four data
models most common. The key-value data model associates a unique key with
each value (which can be a record or object) and provides very fast access to a
value given its key. The document data model is based on JSON (Java Script
Object Notation) and stores the data as documents, which somewhat resemble
complex objects. The graph data model stores objects as graph nodes and rela-
tionships among objects as directed graph edges. Finally, the column-based data
models store the columns of rows clustered on disk pages for fast access and
allow multiple versions of the data. We will discuss some of these in more detail
in Chapter 24.

The XML model has emerged as a standard for exchanging data over the Web and
has been used as a basis for implementing several prototype native XML systems.
XML uses hierarchical tree structures. It combines database concepts with concepts
from document representation models. Data is represented as elements; with the
use of tags, data can be nested to create complex tree structures. This model con-
ceptually resembles the object model but uses different terminology. XML capabili-
ties have been added to many commercial DBMS products. We present an overview
of XML in Chapter 13.

Two older, historically important data models, now known as legacy data models,
are the network and hierarchical models. The network model represents data as
record types and also represents a limited type of 1:N relationship, called a set type.
A 1:N, or one-to-many, relationship relates one instance of a record to many record
instances using some pointer linking mechanism in these models. The network
model, also known as the CODASYL DBTG model,' has an associated record-at-
a-time language that must be embedded in a host programming language. The net-
work DML was proposed in the 1971 Database Task Group (DBTG) Report as an
extension of the COBOL language.

The hierarchical model represents data as hierarchical tree structures. Each hierar-
chy represents a number of related records. There is no standard language for the
hierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dom-
inated the DBMS market for over 20 years between 1965 and 1985. Its DML, called
DL/1, was a de facto industry standard for a long time.'

14CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is
the committee that specified the network model and its language.

15The full chapters on the network and hierarchical models from the second edition of this book are
available from this book’s Companion Web site at http://www.aw.com/elmasri.
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2.7 Summary

In this chapter we introduced the main concepts used in database systems. We
defined a data model and we distinguished three main categories:

= High-level or conceptual data models (based on entities and relationships)
® Low-level or physical data models

B Representational or implementation data models (record-based, object-
oriented)

We distinguished the schema, or description of a database, from the database itself.
The schema does not change very often, whereas the database state changes every
time data is inserted, deleted, or modified. Then we described the three-schema
DBMS architecture, which allows three schema levels:

B An internal schema describes the physical storage structure of the database.
B A conceptual schema is a high-level description of the whole database.

® External schemas describe the views of different user groups.

A DBMS that cleanly separates the three levels must have mappings among
the schemas to transform requests and query results from one level to the
next. Most DBMSs do not separate the three levels completely. We used the
three-schema architecture to define the concepts of logical and physical data
independence.

Then we discussed the main types of languages and interfaces that DBMSs support.
A data definition language (DDL) is used to define the database conceptual schema.
In most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages or functions exist for specifying storage
structures. This distinction is fading away in today’s relational implementations,
with SQL serving as a catchall language to perform multiple roles, including view
definition. The storage definition part (SDL) was included in SQL’s early versions,
but is now typically implemented as special commands for the DBA in relational
DBMSs. The DBMS compiles all schema definitions and stores their descriptions in
the DBMS catalog.

A data manipulation language (DML) is used for specifying database retrievals and
updates. DMLs can be high level (set-oriented, nonprocedural) or low level (record-
oriented, procedural). A high-level DML can be embedded in a host programming
language, or it can be used as a standalone language; in the latter case it is often
called a query language.

We discussed different types of interfaces provided by DBMSs and the types of
DBMS users with which each interface is associated. Then we discussed the
database system environment, typical DBMS software modules, and DBMS
utilities for helping users and the DBA staff perform their tasks. We continued
with an overview of the two-tier and three-tier architectures for database
applications.



Finally, we classified DBMSs according to several criteria: data model, number of
users, number of sites, types of access paths, and cost. We discussed the availabil-
ity of DBMSs and additional modules—from no cost in the form of open source
software to configurations that annually cost millions to maintain. We also
pointed out the variety of licensing arrangements for DBMS and related prod-
ucts. The main classification of DBMSs is based on the data model. We briefly
discussed the main data models used in current commercial DBMSs.

Review Questions

2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

Define the following terms: data model, database schema, database state,
internal schema, conceptual schema, external schema, data independence,
DDL, DML, SDL, VDL, query language, host language, data sublanguage,
database utility, catalog, client/server architecture, three-tier architecture,
and n-tier architecture.

Discuss the main categories of data models. What are the basic differences
among the relational model, the object model, and the XML model?

What is the difference between a database schema and a database state?

Describe the three-schema architecture. Why do we need mappings among
schema levels? How do different schema definition languages support this
architecture?

What is the difference between logical data independence and physical data
independence? Which one is harder to achieve? Why?

What is the difference between procedural and nonprocedural DMLs?

Discuss the different types of user-friendly interfaces and the types of users
who typically use each.

With what other computer system software does a DBMS interact?

. What is the difference between the two-tier and three-tier client/server

architectures?

. Discuss some types of database utilities and tools and their functions.

. What is the additional functionality incorporated in n-tier architecture

(n>3)?

Exercises

2.12.

Think of different users for the database shown in Figure 1.2. What types of
applications would each user need? To which user category would each
belong, and what type of interface would each need?

Exercises
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2.13. Choose a database application with which you are familiar. Design a schema
and show a sample database for that application, using the notation of Fig-
ures 1.2 and 2.1. What types of additional information and constraints
would you like to represent in the schema? Think of several users of your
database, and design a view for each.

2.14. Ifyou were designing a Web-based system to make airline reservations and sell
airline tickets, which DBMS architecture would you choose from Section 2.5?
Why? Why would the other architectures not be a good choice?

2.15. Consider Figure 2.1. In addition to constraints relating the values of col-
umns in one table to columns in another table, there are also constraints that
impose restrictions on values in a column or a combination of columns
within a table. One such constraint dictates that a column or a group of col-
umns must be unique across all rows in the table. For example, in the
STUDENT table, the Student_number column must be unique (to prevent two
different students from having the same Student_number). Identify the col-
umn or the group of columns in the other tables that must be unique across
all rows in the table.
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chapter )

Data Modeling Using the Entity-
Relationship (ER) Model

‘ onceptual modeling is a very important phase in
designing a successful database application. Gener-

ally, the term database application refers to a particular database and the associ-
ated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include
programs that implement database updates corresponding to customer deposits
and withdrawals. These programs would provide user-friendly graphical user inter-
faces (GUIs) utilizing forms and menus for the end users of the application—the
bank customers or bank tellers in this example. In addition, it is now common to
provide interfaces to these programs to BANK customers via mobile devices using
mobile apps. Hence, a major part of the database application will require the
design, implementation, and testing of these application programs. Traditionally,
the design and testing of application programs has been considered to be part of
software engineering rather than database design. In many software design tools, the
database design methodologies and software engineering methodologies are inter-
twined since these activities are strongly related.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during conceptual database design. The design of appli-
cation programs is typically covered in software engineering courses. We present
the modeling concepts of the entity-relationship (ER) model, which is a popular
high-level conceptual data model. This model and its variations are frequently used
for the conceptual design of database applications, and many database design tools
employ its concepts. We describe the basic data-structuring concepts and con-
straints of the ER model and discuss their use in the design of conceptual schemas
for database applications. We also present the diagrammatic notation associated
with the ER model, known as ER diagrams.
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Object modeling methodologies such as the Unified Modeling Language (UML)
are becoming increasingly popular in both database and software design. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams'—is similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as we will discuss in Section 3.1.
We present some of the UML notation and concepts for class diagrams that are
particularly relevant to database design in Section 3.8, and we briefly compare these
to ER notation and concepts. Additional UML notation and concepts are presented
in Section 4.6.

This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for a sam-
ple database application in Section 3.2 to illustrate the use of concepts from the ER
model. This sample database is used throughout the text. In Section 3.3 we present
the concepts of entities and attributes, and we gradually introduce the diagram-
matic technique for displaying an ER schema. In Section 3.4 we introduce the con-
cepts of binary relationships and their roles and structural constraints. Section 3.5
introduces weak entity types. Section 3.6 shows how a schema design is refined to
include relationships. Section 3.7 reviews the notation for ER diagrams, summa-
rizes the issues and common pitfalls that occur in schema design, and discusses
how to choose the names for database schema constructs such as entity types and
relationship types. Section 3.8 introduces some UML class diagram concepts, com-
pares them to ER model concepts, and applies them to the same COMPANY data-
base example. Section 3.9 discusses more complex types of relationships. Sec-
tion 3.10 summarizes the chapter.

The material in Sections 3.8 and 3.9 may be excluded from an introductory course. If
a more thorough coverage of data modeling concepts and conceptual database design
is desired, the reader should continue to Chapter 4, where we describe extensions to
the ER model that lead to the enhanced-ER (EER) model, which includes concepts
such as specialization, generalization, inheritance, and union types (categories).

3.1 Using High-Level Conceptual Data Models
for Database Design

Figure 3.1 shows a simplified overview of the database design process. The first step
shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify

1A class is similar to an entity type in many ways.
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REQUIREMENTS
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Specification (In a high-level data model)
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v Y
TRANSACTION | Internal Schema
IMPLEMENTATION
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Figure 3.1
A simplified diagram to illustrate the main phases of database design.

the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including
both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts.

Once the requirements have been collected and analyzed, the next step is to create a
conceptual schema for the database, using a high-level conceptual data model. This
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step is called conceptual design. The conceptual schema is a concise description of
the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts pro-
vided by the high-level data model. Because these concepts do not include imple-
mentation details, they are usually easier to understand and can be used to
communicate with nontechnical users. The high-level conceptual schema can also
be used as a reference to ensure that all users’ data requirements are met and that
the requirements do not conflict. This approach enables database designers to con-
centrate on specifying the properties of the data, without being concerned with
storage and implementation details, which makes it is easier to create a good con-
ceptual database design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user queries and operations identified during
functional analysis. This also serves to confirm that the conceptual schema meets
all the identified functional requirements. Modifications to the conceptual schema
can be introduced if some functional requirements cannot be specified using the
initial schema.

The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementation
data model—such as the relational (SQL) model—so the conceptual schema is
transformed from the high-level data model into the implementation data model.
This step is called logical design or data model mapping; its result is a database
schema in the implementation data model of the DBMS. Data model mapping is
often automated or semiautomated within the database design tools.

The last step is the physical design phase, during which the internal storage struc-
tures, file organizations, indexes, access paths, and physical design parameters for
the database files are specified. In parallel with these activities, application pro-
grams are designed and implemented as database transactions corresponding to the
high-level transaction specifications.

We present only the basic ER model concepts for conceptual schema design in this
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 A Sample Database Application

In this section we describe a sample database application, called COMPANY, which
serves to illustrate the basic ER model concepts and their use in schema design. We
list the data requirements for the database here, and then create its conceptual
schema step-by-step as we introduce the modeling concepts of the ER model. The
COMPANY database keeps track of a company’s employees, departments, and
projects. Suppose that after the requirements collection and analysis phase, the
database designers provide the following description of the miniworld—the part of
the company that will be represented in the database.
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u The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the depart-
ment. We keep track of the start date when that employee began managing
the department. A department may have several locations.

B A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

= The database will store each employee’s name, Social Security number,
address, salary, sex (gender), and birth date. An employee is assigned to one
department, but may work on several projects, which are not necessarily
controlled by the same department. It is required to keep track of the cur-
rent number of hours per week that an employee works on each project, as
well as the direct supervisor of each employee (who is another employee).

B The database will keep track of the dependents of each employee for insur-
ance purposes, including each dependent’s first name, sex, birth date, and
relationship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure will be
explained gradually as the ER model concepts are presented. We describe the step-
by-step process of deriving this schema from the stated requirements—and explain
the ER diagrammatic notation—as we introduce the ER model concepts.

3.3 Entity Types, Entity Sets, Attributes,
and Keys

The ER model describes data as entities, relationships, and attributes. In Section 3.3.1
we introduce the concepts of entities and their attributes. We discuss entity types
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. We describe relation-
ships in Section 3.4.

3.3.1 Entities and Attributes

Entities and Their Attributes. The basic concept that the ER model represents is
an entity, which is a thing or object in the real world with an independent existence.
An entity may be an object with a physical existence (for example, a particular per-
son, car, house, or employee) or it may be an object with a conceptual existence (for
instance, a company, a job, or a university course). Each entity has attributes—the
particular properties that describe it. For example, an EMPLOYEE entity may be
described by the employee’s name, age, address, salary, and job. A particular entity

The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in the
United States to keep track of his or her employment, benefits, and taxes. Other countries may have
similar identification schemes, such as personal identification card numbers.
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Cumber >

EMPLOYEE _Number_of_employees’—| DEPARTMENT |

PROJECT |

Supervisee

@

DEPENDENTS_OF

| DEPENDENT |

Figure 3.2

An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout
this chapter and is summarized in Figure 3.14.

will have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.

Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e; has four attributes: Name, Address, Age, and Home_phone; their values
are John Smith,” 2311 Kirby, Houston, Texas 77001’, ‘55, and ‘713-749-2630’,
respectively. The COMPANY entity ¢; has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.
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Name = John Smith Name = Sunco Oil

Address = 2311 Kirby
Houston, Texas 77001
ey cq Headquarters = Houston

Age =55

Home_phone = 713-749-2630 President = John Smith

Figure 3.3

Two entities,
EMPLOYEE ey, and
COMPANY cy, and
their attributes.

Several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
types and illustrate their use via examples. Then we discuss the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the
values 2311 Kirby’, ‘Houston’, “Texas’, and ‘77001’. Attributes that are not divisible
are called simple or atomic attributes. Composite attributes can form a hierarchy;
for example, Street_address can be further subdivided into three simple component
attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value
of a composite attribute is the concatenation of the values of its component simple
attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its

Address
Street_address City State Zip
Number Street Apartment_number

8Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can
be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

Figure 3.4
A hierarchy of
composite attributes.
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components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (Zip Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a
set of values for the same entity—for instance, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value,
whereas two-tone cars have two color values. Similarly, one person may not have any
college degrees, another person may have one, and a third person may have two or
more degrees; therefore, different people can have different numbers of values for the
College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values allowed
for each individual entity. For example, the Colors attribute of a car may be restricted to
have between one and two values, if we assume that a car can have two colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute,
which is called a stored attribute. Some attribute values can be derived from related
entities; for example, an attribute Number_of_employees of a DEPARTMENT entity
can be derived by counting the number of employees related to (working for) that
department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to people with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have
NULL for College_degrees. NULL can also be used if we do not know the value of an
attribute for a particular entity—for example, if we do not know the home phone
number of John Smith’ in Figure 3.3. The meaning of the former type of NULL is
not applicable, whereas the meaning of the latter is unknown. The unknown category
of NULL can be further classified into two cases. The first case arises when it is known
that the attribute value exists but is missing—for instance, if the Height attribute of a
person is listed as NULL. The second case arises when it is not known whether the
attribute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that, in general, composite and multivalued attri-
butes can be nested arbitrarily. We can represent arbitrary nesting by grouping
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{Address_phone( {Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip) )}
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Figure 3.5
A complex attribute:

Address_phone.

components of a composite attribute between parentheses ( ) and separating
the components with commas, and by displaying multivalued attributes between
braces { }. Such attributes are called complex attributes. For example, if a person
can have more than one residence and each residence can have a single address and
multiple phones, an attribute Address_phone for a person can be specified as shown
in Figure 3.5.* Both Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee entities
share the same attributes, but each entity has its own value(s) for each attribute. An
entity type defines a collection (or set) of entities that have the same attributes. Each
entity type in the database is described by its name and attributes. Figure 3.6 shows
two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes
for each. A few individual entities of each type are also illustrated, along with the
values of their attributes. The collection of all entities of a particular entity type in the

Entity Type Name: EMPLOYEE COMPANY

Name, Headquarters, President
S

Name, Age, Salary
e

N\ N\

€1 o Cle

(John Smith, 55, 80k) (Sunco Oil, Houston, John Smith)

€2 o Co o
Entity Set:

(Extension) (Fast Computer, Dallas, Bob King)

(Fred Brown, 40, 30K)

€3 o

(Judy Clark, 25, 20K)

4For those familiar with XML, we should note that complex attributes are similar to complex elements in
XML (see Chapter 13).

Figure 3.6

Two entity types,
EMPLOYEE and
COMPANY, and some
member entities of
each.
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database at any point in time is called an entity set or entity collection; the entity set
is usually referred to using the same name as the entity type, even though they are
two separate concepts. For example, EMPLOYEE refers to both a type of entity as
well as the current collection of all employee entities in the database. It is now more
common to give separate names to the entity type and entity collection; for example
in object and object-relational data models (see Chapter 12).

An entity type is represented in ER diagrams® (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
double ovals. Figure 3.7(a) shows a CAR entity type in this notation.

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usually
has one or more attributes whose values are distinct for each individual entity in the
entity set. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely. For example, the Name attribute is a key of the
COMPANY entity type in Figure 3.6 because no two companies are allowed to have
the same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-
rity number). Sometimes several attributes together form a key, meaning that the
combination of the attribute values must be distinct for each entity. If a set of attri-
butes possesses this property, the proper way to represent this in the ER model that
we describe here is to define a composite attribute and designate it as a key attribute
of the entity type. Notice that such a composite key must be minimal; that is, all
component attributes must be included in the composite attribute to have the
uniqueness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval,
as illustrated in Figure 3.7(a).

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the key
attribute at the same time. It is not the property of a particular entity set; rather, it is
a constraint on any entity set of the entity type at any point in time. This key con-
straint (and other constraints we discuss later) is derived from the constraints of the
miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in

SWe use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many
other notations are in use; we illustrate some of them later in this chapter when we present UML class
diagrams, and some additional diagrammatic notations are given in Appendix A.
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Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}
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((ABC 128, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})
CAR, .
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((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue}) The CAR entity type

CAR3
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})
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with two key attributes,
Registration and
Vehicle_id. (a) ER

its own right. The Registration attribute is an example of a composite key formed
from two simple component attributes, State and Number, neither of which is a key
on its own. An entity type may also have no key, in which case it is called a weak
entity type (see Section 3.5).

In our diagrammatic notation, if two attributes are underlined separately, then each
is a key on its own. Unlike the relational model (see Section 5.2.2), there is no con-
cept of primary key in the ER model that we present here; the primary key will be
chosen during mapping to a relational schema (see Chapter 9).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not typically displayed in basic ER diagrams and are similar to the basic data
types available in most programming languages, such as integer, string, Boolean,
float, enumerated type, subrange, and so on. However, data types of attributes can
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be specified in UML class diagrams (see Section 3.8) and in other diagrammatic
notations used in database design tools. Additional data types to represent common
database types, such as date, time, and other concepts, are also employed.

Mathematically, an attribute A of entity set E whose value set is V can be defined as
a function from E to the power set® P(V) of V-

A:E— P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value
is represented by the empty set. For single-valued attributes, A(e) is restricted to
being a singleton set for each entity e in E, whereas there is no restriction on multi-
valued attributes.” For a composite attribute A, the value set V is the power set of
the Cartesian product of P(V7), P(V), ..., P(V,), where Vi, V,, ..., V, are the
value sets of the simple component attributes that form A:

V=P(P(V,) X P(V,)x---xXP(V,))

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database at a particular time. Those values represent the data from
the current state of the miniworld and correspond to the data as it actually exists in
the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database

We can now define the entity types for the COMPANY database, based on the
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section 3.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 3.2, we can identify
four entity types—one corresponding to each of the four items in the specification
(see Figure 3.8):

1. An entity type DEPARTMENT with attributes Name, Number, Locations,
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and
Controlling_department. Both Name and Number are (separate) key attributes.

3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary,
Birth_date, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements.
We must go back to the users to see if any of them will refer to the individual
components of Name—First_name, Middle_initial, Last_name—or of Address. In

5The power set P(V/) of a set Vis the set of all subsets of V.

A singleton set is a set with only one element (value).
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Figure 3.8

Preliminary design of
entity types for the
COMPANY database.
Some of the shown
attributes will be refined
into relationships.

our example, Name is modeled as a composite attribute, whereas Address is
not, presumably after consultation with the users.

4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex,
Birth_date, and Relationship (to the employee).

Another requirement is that an employee can work on several projects, and the
database has to store the number of hours per week an employee works on each
project. This requirement is listed as part of the third requirement in Section 3.2,
and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it
can be represented as a multivalued composite attribute of PROJECT called
Workers with the simple components (Employee, Hours). We choose the first
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alternative in Figure 3.8; we shall see in the next section that this will be refined into
a many-to-many relationship, once we introduce the concepts of relationships.

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to
an employee who manages the department; the attribute Controlling_department
of PROJECT refers to the department that controls the project; the attribute
Supervisor of EMPLOYEE refers to another employee (the one who supervises this
employee); the attribute Department of EMPLOYEE refers to the department for
which the employee works; and so on. In the ER model, these references should not
be represented as attributes but as relationships. The initial COMPANY database
schema from Figure 3.8 will be refined in Section 3.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances

A relationship type R among n entity types Ej, E,, . . ., E,, defines a set of associa-
tions—or a relationship set—among entities from these entity types. Similar to the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances r; where each r; associates n
individual entities (ej, ey, . . . , e,), and each entity e; in r; is a member of entity set Ej,
1 <j < n. Hence, a relationship set is a mathematical relation on Ej, Ey, . . ., E,;
alternatively, it can be defined as a subset of the Cartesian product of the entity sets
E| X E, x...XE,. Each of the entity types E}, E, . . ., E, is said to participate in the
relationship type R; similarly, each of the individual entities ey, e,, . . ., e, is said to
participate in the relationship instance r; = (ey, €, . . . , €,,).

Informally, each relationship instance r; in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance r; represents the fact that the entities participating in 7;
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types
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EMPLOYEE WORKS_FOR DEPARTMENT

Figure 3.9

Some instances in
the WORKS_FOR
relationship set,
which represents a
relationship type
WORKS_FOR
between EMPLOYEE
and DEPARTMENT.

EMPLOYEE and DEPARTMENT, which associates each employee with the depart-
ment for which the employee works. Each relationship instance in the relationship
set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT
entity. Figure 3.9 illustrates this example, where each relationship instance r; is
shown connected to the EMPLOYEE and DEPARTMENT entities that participate
in r;. In the miniworld represented by Figure 3.9, the employees ey, e, and e work
for department dy; the employees e, and e, work for department d,; and the employ-
ees e5 and e; work for department d;.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
are connected by straight lines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box
(see Figure 3.2).

3.4.2 Relationship Degree, Role Names, and Recursive
Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
of participating entity types. Hence, the WORKS_FOR relationship is of degree
two. A relationship type of degree two is called binary, and one of degree three is
called ternary. An example of a ternary relationship is SUPPLY, shown in Fig-
ure 3.10, where each relationship instance r; associates three entities—a supplier s, a
part p, and a project j—whenever s supplies part p to project j. Relationships can
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Figure 3.10
Some relationship
instances in the
SUPPLY ternary
relationship set.

SUPPLIER SUPPLY PROJECT

generally be of any degree, but the ones most common are binary relationships.
Higher-degree relationships are generally more complex than binary relationships;
we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary rela-
tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type, where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attribute,
we always have two options or two points of view. In this example, the alternative point
of view is to think of a multivalued attribute Employees of the entity type
DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-
ties who work for that department. The value set of this Employees attribute is the power
set of the EMPLOYEE entity set. Either of these two attributes—Department of
EMPLOYEE or Employees of DEPARTMENT—can represent the WORKS_FOR relation-
ship type. If both are represented, they are constrained to be inverses of each other.®

8This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 12), relationships can be represented by
reference attributes, either in one direction or in both directions as inverses. In relational databases
(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.
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Role Names and Recursive Relationships. Each entity type that participates
in a relationship type plays a particular role in the relationship. The role name sig-
nifies the role that a participating entity from the entity type plays in each relation-
ship instance, and it helps to explain what the relationship means. For example, in
the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker
and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be used
as the role name. However, in some cases the same entity type participates more than
once in a relationship type in different roles. In such cases the role name becomes
essential for distinguishing the meaning of the role that each participating entity
plays. Such relationship types are called recursive relationships or self-referencing
relationships. Figure 3.11 shows an example. The SUPERVISION relationship type
relates an employee to a supervisor, where both employee and supervisor entities are
members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type
participates twice in SUPERVISION: once in the role of supervisor (or boss), and
once in the role of supervisee (or subordinate). Each relationship instance r; in
SUPERVISION associates two different employee entities e; and e, one of which
plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the
lines marked ‘1’ represent the supervisor role, and those marked 2’ represent the
supervisee role; hence, e; supervises e, and e, e, supervises es and e;, and e5 super-
vises e; and e4. In this example, each relationship instance must be connected with
two lines, one marked with ‘1’ (supervisor) and the other with 2’ (supervisee).

EMPLOYEE SUPERVISION

Figure 3.11

A recursive relationship
SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE in
the subordinate role (9).
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3.4.3 Constraints on Binary Relationship Types

Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of binary relationship
constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees (N),” but an employee
can be related to (work for) at most one department (1). This means that for
this particular relationship type WORKS_FOR, a particular department entity can
be related to any number of employees (N indicates there is no maximum number).
On the other hand, an employee can be related to a maximum of one department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,
and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage at

Figure 3.12
A 1:1 relationship,
MANAGES.

EMPLOYEE MANAGES DEPARTMENT

9N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is
used instead of N.
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EMPLOYEE WORKS_ON PROJECT

Figure 3.13
An M:N relationship,
WORKS_ON.
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most one department and a department can have at most one manager. The rela-
tionship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the
miniworld rule is that an employee can work on several projects and a project can
have several employees.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this
notation, we can either specify no maximum (N) or a maximum of one (1) on par-
ticipation. An alternative notation (see Section 3.7.4) allows the designer to specify
a specific maximum number on participation, such as 4 or 5.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—that we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 3.12 we do not expect every
employee to manage a department, so the participation of EMPLOYEE in the
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MANAGES relationship type is partial, meaning that some or part of the set of
employee entities are related to some department entity via MANAGES, but not
necessarily all. We will refer to the cardinality ratio and participation constraints,
taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double
line connecting the participating entity type to the relationship, whereas partial par-
ticipation is represented by a single line (see Figure 3.2). Notice that in this notation,
we can either specify no minimum (partial participation) or a minimum of one (total
participation). An alternative notation (see Section 3.7.4) allows the designer to spec-
ify a specific minimum number on participation in the relationship, such as 4 or 5.

We will discuss constraints on higher-degree relationships in Section 3.9.

3.4.4 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that a particular employee works
on a particular project, we can include an attribute Hours for the WORKS_ON
relationship type in Figure 3.13. Another example is to include the date on which
a manager started managing a department via an attribute Start_date for the
MANAGES relationship type in Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT,
although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1
relationship, so every department or employee entity participates in at most one
relationship instance. Hence, the value of the Start_date attribute can be determined
separately, either by the participating department entity or by the participating
employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for at most one
department, and hence participates in at most one relationship instance in
WORKS_FOR, but a department can have many employees, each with a different start date.
In both 1:1 and 1:N relationship types, the decision where to place a relationship
attribute—as a relationship type attribute or as an attribute of a participating entity
type—is determined subjectively by the schema designer.

For M:N (many-to-many) relationship types, some attributes may be determined
by the combination of participating entities in a relationship instance, not by any
single entity. Such attributes must be specified as relationship attributes. An example
is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the number
of hours per week an employee currently works on a project is determined by an
employee-project combination and not separately by either entity.
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3.5 Weak Entity Types

Entity types that do not have key attributes of their own are called weak entity types. In
contrast, regular entity types that do have a key attribute—which include all the exam-
ples discussed so far—are called strong entity types. Entities belonging to a weak entity
type are identified by being related to specific entities from another entity type in com-
bination with one of their attribute values. We call this other entity type the identifying
or owner entity type,'’ and we call the relationship type that relates a weak entity type
to its owner the identifying relationship of the weak entity type.!! A weak entity type
always has a total participation constraint (existence dependency) with respect to its
identifying relationship because a weak entity cannot be identified without an owner
entity. However, not every existence dependency results in a weak entity type. For
example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity,
even though it has its own key (License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our
example, the attributes of DEPENDENT are Name (the first name of the dependent),
Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct
employees may, by chance, have the same values for Name, Birth_date, Sex, and
Relationship, but they are still distinct entities. They are identified as distinct entities
only after determining the particular employee entity to which each dependent is
related. Each employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the attribute that can
uniquely identify weak entities that are related to the same owner entity.'* In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Fig-
ure 3.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multival-
ued) attributes. In the preceding example, we could specify a multivalued attribute
Dependents for EMPLOYEE, which is a multivalued composite attribute with the
component attributes Name, Birth_date, Sex, and Relationship. The choice of which
representation to use is made by the database designer. One criterion that may be
used is to choose the weak entity type representation if the weak entity type partici-
pates independently in relationship types other than its identifying relationship type.

In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 3.9.

19The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
The weak entity type is also sometimes called the child entity type or the subordinate entity type.

12The partial key is sometimes called the discriminator.
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3.6 Refining the ER Design for
the COMPANY Database

We can now refine the database design in Figure 3.8 by changing the attributes that
represent relationships into relationship types. The cardinality ratio and participa-
tion constraint of each relationship type are determined from the requirements
listed in Section 3.2. If some cardinality ratio or dependency cannot be determined
from the requirements, the users must be questioned further to determine these
structural constraints.

In our example, we specify the following relationship types:

B MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE
and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT
participation is not clear from the requirements. We question the users, who
say that a department must have a manager at all times, which implies total
participation.'® The attribute Start_date is assigned to this relationship type.

B WORKS_FOR, a 1:N (one-to-many) relationship type between
DEPARTMENT and EMPLOYEE. Both participations are total.

B CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is deter-
mined to be partial, after consultation with the users indicates that some
departments may control no projects.

B SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role). Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

B WORKS_ON, determined to be an M:N (many-to-many) relationship type
with attribute Hours, after the users indicate that a project can have several
employees working on it. Both participations are determined to be total.

B DEPENDENTS_OF, a I:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the previous six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include Manager
and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from
DEPENDENT. It is important to have the least possible redundancy when we design the
conceptual schema of a database. If some redundancy is desired at the storage level or at
the user view level, it can be introduced later, as discussed in Section 1.6.1.

13The rules in the miniworld that determine the constraints are sometimes called the business rules,
since they are determined by the business or organization that will utilize the database.
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3.7 ER Diagrams, Naming Conventions,
and Design Issues

3.7.1 Summary of Notation for ER Diagrams

Figures 3.9 through 3.13 illustrate examples of the participation of entity types in
relationship types by displaying their entity sets and relationship sets (or
extensions)—the individual entity instances in an entity set and the individual rela-
tionship instances in a relationship set. In ER diagrams the emphasis is on repre-
senting the schemas rather than the instances. This is more useful in database
design because a database schema changes rarely, whereas the contents of the entity
sets may change frequently. In addition, the schema is obviously easier to display,
because it is much smaller.

Figure 3.2 displays the COMPANY ER database schema as an ER diagram. We now
review the full ER diagram notation. Regular (strong) entity types such as
EMPLOYEE, DEPARTMENT, and PROJECT are shown in rectangular boxes. Relation-
ship types such as WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are
shown in diamond-shaped boxes attached to the participating entity types with
straight lines. Attributes are shown in ovals, and each attribute is attached by a straight
line to its entity type or relationship type. Component attributes of a composite attri-
bute are attached to the oval representing the composite attribute, as illustrated by the
Name attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as
illustrated by the Locations attribute of DEPARTMENT. Key attributes have their names
underlined. Derived attributes are shown in dotted ovals, as illustrated by the
Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
having their identifying relationship placed in double diamonds, as illustrated by
the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type.
The partial key of the weak entity type is underlined with a dotted line.

In Figure 3.2 the cardinality ratio of each binary relationship type is specified
by attaching a 1, M, or N on each participating edge. The cardinality ratio
of DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for
DEPARTMENT: EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
pation constraint is specified by a single line for partial participation and by double
lines for total participation (existence dependency).

In Figure 3.2 we show the role names for the SUPERVISION relationship type
because the same EMPLOYEE entity type plays two distinct roles in that relation-
ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee because
each employee in the role of supervisee has at most one direct supervisor, whereas
an employee in the role of supervisor can supervise zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams. It is important to note
that there are many other alternative diagrammatic notations (see Section 3.7.4 and
Appendix A).
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3.7.2 Proper Naming of Schema Constructs

When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to
the different constructs in the schema. We choose to use singular names for entity
types, rather than plural ones, because the entity type name applies to each indi-
vidual entity belonging to that entity type. In our ER diagrams, we will use the con-
vention that entity type and relationship type names are in uppercase letters,
attribute names have their initial letter capitalized, and role names are in lowercase
letters. We have used this convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements,
the nouns appearing in the narrative tend to give rise to entity type names, and the
verbs tend to indicate names of relationship types. Attribute names generally arise
from additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this nam-
ing convention further, we have one exception to the convention in Figure 3.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
type) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). To
change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design

It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this
section, we give some brief guidelines as to which construct should be chosen in
particular situations.

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

B A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses of
one another are refined into a binary relationship. We discussed this type of
refinement in detail in Section 3.6. It is important to note that in our notation,
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once an attribute is replaced by a relationship, the attribute itself should be
removed from the entity type to avoid duplication and redundancy.

® Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that each
of several entity types in a UNIVERSITY database, such as STUDENT,
INSTRUCTOR, and COURSE, has an attribute Department in the
initial design; the designer may then choose to create an entity type
DEPARTMENT with a single attribute Dept_name and relate it to the three
entity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate rela-
tionships. Other attributes/relationships of DEPARTMENT may be discov-
ered later.

B An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In
this case, DEPARTMENT may be reduced or demoted to an attribute of
STUDENT.

m Section 3.9 discusses choices concerning the degree of a relationship. In Chap-
ter 4, we discuss other refinements concerning specialization/generalization.

3.7.4 Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 3.8, we introduce
the Unified Modeling Language (UML) notation for class diagrams, which has been
proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N)
and single/double-line notation for participation constraints. This notation
involves associating a pair of integer numbers (min, max) with each participation
of an entity type E in a relationship type R, where 0 < min < max and max > 1. The
numbers mean that for each entity e in E, e must participate in at least min and at
most max relationship instances in R at any point in time. In this method,
min = 0 implies partial participation, whereas min > 0 implies total participation.

Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion.'* Usually, one uses either the cardinality ratio/single-line/double-line nota-
tion or the (min, max) notation. The (min, max) notation is more precise, and we
can use it to specify some structural constraints for relationship types of higher
degree. However, it is not sufficient for specifying some key constraints on higher-
degree relationships, as discussed in Section 3.9.

Figure 3.15 also displays all the role names for the COMPANY database schema.

"4In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR
relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).
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WORKS_FOR (4,N)

-
- Pepartment

<. Number_of_employees \| DEPARTMENT |

Department (0,N) | Controlling
aged Department
CONTROLS
) ( Hours >
(ON Worker Controlled
Supervisor Project (1,1) | Project
PROJECT |

Employee

DEPENDENTS_OF

Dependent

| DEPENDENT |

Figure 3.15

ER diagrams for the company schema, with structural constraints specified using
(min, max) notation and role names.

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here and compare them with ER diagrams. In some
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elationship change_manager
ge-manag [whole > Part |
Figure 3.16

The COMPANY conceptual schema in UML class diagram notation.

ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 8.6. Figure 3.16
shows how the COMPANY ER database schema in Figure 3.15 can be displayed
using UML class diagram notation. The entity types in Figure 3.15 are modeled as
classes in Figure 3.16. An entity in ER corresponds to an object in UML.

In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the class name
(similar to entity type name); the middle section includes the attributes; and the
last section includes operations that can be applied to individual objects (similar to
individual entities in an entity set) of the class. Operations are not specified in ER
diagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn,
Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (or
data type) of an attribute if desired, by placing a colon (:) followed by the domain
name or description, as illustrated by the Name, Sex, and Bdate attributes
of EMPLOYEE in Figure 3.16. A composite attribute is modeled as a
structured domain, as illustrated by the Name attribute of EMPLOYEE. A multival-
ued attribute will generally be modeled as a separate class, as illustrated by the
LOCATION class in Figure 3.16.
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Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation. How-
ever, the multiplicities are placed on the opposite ends of the relationship when com-
pared with the (min, max) notation discussed in Section 3.7.4 (compare Fig-
ures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and a
single 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2)
is called a reflexive association in UML, and the role names—Ilike the multiplicities—
are placed at the opposite ends of an association when compared with the placing of
role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation.
Aggregation is meant to represent a relationship between a whole object and its com-
ponent parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeled
the locations of a department and the single location of a project as aggregations.
However, aggregation and association do not have different structural properties, and
the choice as to which type of relationship to use—aggregation or association—is
somewhat subjective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations
(or aggregations). In the unidirectional case, the line connecting the classes is dis-
played with an arrow to indicate that only one direction for accessing related
objects is needed. If no arrow is displayed, the bidirectional case is assumed, which
is the default. For example, if we always expect to access the manager of a depart-
ment starting from a DEPARTMENT object, we would draw the association line rep-
resenting the MANAGES association with an arrow from DEPARTMENT to
EMPLOYEE. In addition, relationship instances may be specified to be ordered.
For example, we could specify that the employee objects related to each depart-
ment through the WORKS_FOR association (relationship) should be ordered by
their Start_date attribute value. Association (relationship) names are optional in
UML, and relationship attributes are displayed in a box attached with a dashed
line to the line representing the association/aggregation (see Start_date and Hours
in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the
operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion.
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Weak entities can be modeled using the UML construct called qualified association
(or qualified aggregation); this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is
illustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 3.16. In UML terminology, the partial key attribute Dependent_name is called
the discriminator, because its value distinguishes the objects associated with
(related to) the same EMPLOYEE entity. Qualified associations are not restricted to
modeling weak entities, and they can be used to model other situations in UML.

This section is not meant to be a complete description of UML class diagrams, but
rather to illustrate one popular type of alternative diagrammatic notation that can
be used for representing ER modeling concepts.

3.9 Relationship Types of Degree
Higher than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a
relationship type of degree three ternary. In this section, we elaborate on the differ-
ences between binary and higher-degree relationships, when to choose higher-
degree versus binary relationships, and how to specify constraints on higher-degree
relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at the
instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-
tionship instances (s, j, p), where the meaning is that s is a SUPPLIER who is currently
supplying a PART p to a PROJECT j. In general, a relationship type R of degree #n will
have n edges in an ER diagram, one connecting R to each participating entity type.

Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY,
USES, and SUPPLIES. In general, a ternary relationship type represents different
information than do three binary relationship types. Consider the three binary
relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
some part to project j. The existence of three relationship instances (s, p),
(j» p), and (s, j) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not neces-
sarily imply that an instance (s, j, p) exists in the ternary relationship SUPPLY,
because the meaning is different. It is often tricky to decide whether a particular
relationship should be represented as a relationship type of degree n or should be
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Figure 3.17

Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not
equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.
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broken down into several relationship types of smaller degrees. The designer must
base this decision on the semantics or meaning of the particular situation being
represented. The typical solution is to include the ternary relationship plus one or
more of the binary relationships, if they represent different meanings and if all are
needed by the application.
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Figure 3.18
Another example of
ternary versus binary
relationship types.

TAUGHT_DURING ﬁ
NSTRUCTOR.‘ SEMESTER

OFFERED_DURING

COURSE

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the
weak entity type SUPPLY in Figure 3.17(c) is identified by the combination of its
three owner entities from SUPPLIER, PART, and PROJECT.

It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary N:1 relationships relate SUPPLY to each of the three participating
entity types.

Another example is shown in Figure 3.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, ¢) whenever INSTRUCTOR i offers
COURSE ¢ during SEMESTER s. The three binary relationship types shown in Fig-
ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-
tors who can teach that course, TAUGHT_DURING relates a semester to the instructors
who taught some course during that semester, and OFFERED_DURING relates a
semester to the courses offered during that semester by any instructor. These ter-
nary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, ¢) should not exist in OFFERS wunless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, ¢) exists in OFFERED_DURING, and an instance
(i, ¢) exists in CAN_TEACH. However, the reverse is not always true;
we may have instances (i, s), (s, ¢), and (i, ¢) in the three binary relationship types
with no corresponding instance (i, s, ¢) in OFFERS. Note that in this example,
based on the meanings of the relationships, we can infer the instances of
TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS, but
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INTERVIEW JOB_OFFER

we cannot infer the instances of CAN_TEACH; therefore, TAUGHT_DURING and
OFFERED_DURING are redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relation-
ship, they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and a
course can be taught by only one instructor), then the ternary relationship OFFERS
can be left out because it can be inferred from the three binary relationships
CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING. The schema designer
must analyze the meaning of each specific situation to decide which of the binary
and ternary relationship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19. This example shows part of a
database that keeps track of candidates interviewing for jobs at various companies,
which may be part of an employment agency database. In the requirements, a can-
didate can have multiple interviews with the same company (for example, with dif-
ferent company departments or on separate dates), but a job offer is made based on
one of the interviews. Here, INTERVIEW is represented as a weak entity with two
owners CANDIDATE and COMPANY, and with the partial key Dept_date. An
INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-
nation of the date and department of the interview.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each

Figure 3.19

A weak entity type

INTERVIEW with a

ternary identifying

relationship type.



92

Chapter 3 Data Modeling Using the Entity—Relationship (ER) Model

participation arc (both M and N symbols stand for many or any number)." Let us
illustrate this constraint using the SUPPLY relationship in Figure 3.17.

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (j, p) a key for the relationship set. In this notation, the participa-
tions that have a 1 specified on them are not required to be part of the identifying
key for the relationship set.'® If all three cardinalities are M or N, then the key will
be the combination of all three participants.

The second notation is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2,'7 but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

3.10 Another Example: A UNIVERSITY Database

We now present another example, a UNIVERSITY database, to illustrate the ER
modeling concepts. Suppose that a database is needed to keep track of student
enrollments in classes and students’ final grades. After analyzing the miniworld
rules and the users’ needs, the requirements for this database were determined to be
as follows (for brevity, we show the chosen entity type names and attribute names
for the conceptual schema in parentheses as we describe the requirements; relation-
ship type names are only shown in the ER schema diagram):

B The university is organized into colleges (COLLEGE), and each college has a
unique name (CName), a main office (COffice) and phone (CPhone), and a
particular faculty member who is dean of the college. Each college adminis-
ters a number of academic departments (DEPT). Each department has a
unique name (DName), a unique code number (DCode), a main office
(DOftice) and phone (DPhone), and a particular faculty member who chairs
the department. We keep track of the start date (CStartDate) when that fac-
ulty member began chairing the department.

'5This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 9.
"6This is also true for cardinality ratios of binary relationships.

"The (min, max) constraints can determine the keys for binary relationships.
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B A department offers a number of courses (COURSE), each of which has a
unique course name (CoName), a unique code number (CCode), a course
level (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 for
junior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credit
hours (Credits), and a course description (CDesc). The database also keeps
track of instructors INSTRUCTOR); and each instructor has a unique iden-
tifier (Id), name (IName), oftice (IOffice), phone (IPhone), and rank (Rank);
in addition, each instructor works for one primary academic department.

B The database will keep student data (STUDENT) and stores each student’s
name (SName, composed of first name (FName), middle name (MName),
last name (LName)), student id (Sid, unique for every student), address
(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-
dent is assigned to one primary academic department. It is required to keep
track of the student’s grades in each section the student has completed.

u Courses are offered as sections (SECTION). Each section is related to a single
course and a single instructor and has a unique section identifier (SecId). A
section also has a section number (SecNo: this is coded as 1, 2, 3, . . . for mul-
tiple sections offered during the same semester/year), semester (Sem), year
(Year), classroom (CRoom: this is coded as a combination of building code
(Bldg) and room number (RoomNo) within the building), and days/times
(DaysTime: for example, ‘ MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—
restricted to only allowed days/time values). (Note: The database will keep
track of all the sections offered for the past several years, in addition to the
current offerings. The Secld is unique for all sections, not just the sections for
a particular semester.) The database keeps track of the students in each section,
and the grade is recorded when available (this is a many-to-many relationship
between students and sections). A section must have at least five students.

The ER diagram for these requirements is shown in Figure 3.20 using the min-max ER
diagrammatic notation. Notice that for the SECTION entity type, we only showed
SecID as an underlined key, but because of the miniworld constraints, several other
combinations of values have to be unique for each section entity. For example, each of
the following combinations must be unique based on the typical miniworld constraints:

1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This
specifies that the section numbers of a particular course must be different
during each particular semester and year.

2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semester
and year, a classroom cannot be used by two different sections at the same
days/time.

3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)):
This specifies that in a particular semester and year, an instructor cannot
teach two sections at the same days/time. Note that this rule will not apply if
an instructor is allowed to teach two combined sections together in the par-
ticular university.

Can you think of any other attribute combinations that have to be unique?
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Figure 3.20
An ER diagram for a UNIVERSITY database schema.

3.11 Summary

In this chapter we presented the modeling concepts of a high-level conceptual data
model, the entity-relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented a
sample set of database requirements for the COMPANY database, which is one of the
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examples that is used throughout this text. We defined the basic ER model concepts
of entities and their attributes. Then we discussed NULL values and presented the
various types of attributes, which can be nested arbitrarily to produce complex
attributes:

® Simple or atomic

® Composite

B Multivalued
We also briefly discussed stored versus derived attributes. Then we discussed the
ER model concepts at the schema or “intension” level:
Entity types and their corresponding entity sets
Key attributes of entity types
Value sets (domains) of attributes

Relationship types and their corresponding relationship sets

Participation roles of entity types in relationship types

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

B Cardinality ratios (1:1, 1:N, M:N for binary relationships)

B Participation constraints (total, partial)

We noted that, alternatively, another method of specifying structural constraints is
to specify minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type. We discussed weak entity types and the
related concepts of owner entity types, identifying relationship types and partial key
attributes.

Entity-relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they
relate to ER modeling concepts. We also described ternary and higher-degree
relationship types in more detail, and we discussed the circumstances under which
they are distinguished from binary relationships. Finally, we presented require-
ments for a UNIVERSITY database schema as another example, and we showed the
ER schema design.

The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model many database appli-
cations. However, more complex applications—such as engineering design, medi-
cal information systems, and telecommunications—require additional concepts if
we want to model them with greater accuracy. We discuss some advanced model-
ing concepts in Chapter 8 and revisit further advanced data modeling techniques in
Chapter 26.
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Review Questions

3.1.

3.2.

3.3.

3.4.

3.5.
3.6.

3.7.

3.8.

3.9.

3.10.

3.12.

3.13.

3.14.

3.15.

Discuss the role of a high-level data model in the database design process.
List the various cases where use of a NULL value would be appropriate.

Define the following terms: entity, attribute, attribute value, relationship
instance, composite attribute, multivalued attribute, derived attribute, com-
plex attribute, key attribute, and value set (domain).

What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

Explain the difference between an attribute and a value set.

What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

What is a participation role? When is it necessary to use role names in the
description of relationship types?

Describe the two alternatives for specifying structural constraints on rela-
tionship types. What are the advantages and disadvantages of each?

Under what conditions can an attribute of a binary relationship type be
migrated to become an attribute of one of the participating entity types?

When we think of relationships as attributes, what are the value sets of these
attributes? What class of data models is based on this concept?

. What is meant by a recursive relationship type? Give some examples of

recursive relationship types.

When is the concept of a weak entity used in data modeling? Define the
terms owner entity type, weak entity type, identifying relationship type, and
partial key.

Can an identifying relationship of a weak entity type be of a degree greater
than two? Give examples to illustrate your answer.

Discuss the conventions for displaying an ER schema as an ER diagram.

Discuss the naming conventions used for ER schema diagrams.

Exercises

3.16.

Which combinations of attributes have to be unique for each individual

SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce

each of the following miniworld constraints:

a. During a particular semester and year, only one section can use a particu-
lar classroom at a particular DaysTime value.



3.18.

3.19.

3.20.

3.21.

b. During a particular semester and year, an instructor can teach only one
section at a particular DaysTime value.

c. During a particular semester and year, the section numbers for sections
offered for the same course must all be different.

Can you think of any other similar constraints?

. Composite and multivalued attributes can be nested to any number of lev-

els. Suppose we want to design an attribute for a STUDENT entity type to
keep track of previous college education. Such an attribute will have one
entry for each college previously attended, and each such entry will be com-
posed of college name, start and end dates, degree entries (degrees awarded
at that college, if any), and transcript entries (courses completed at that col-
lege, if any). Each degree entry contains the degree name and the month and
year the degree was awarded, and each transcript entry contains a course
name, semester, year, and grade. Design an attribute to hold this informa-
tion. Use the conventions in Figure 3.5.

Show an alternative design for the attribute described in Exercise 3.17 that
uses only entity types (including weak entity types, if needed) and relation-

ship types.

Consider the ER diagram in Figure 3.21, which shows a simplified schema
for an airline reservations system. Extract from the ER diagram the require-
ments and constraints that produced this schema. Try to be as precise as
possible in your requirements and constraints specification.

In Chapters 1 and 2, we discussed the database environment and database
users. We can consider many entity types to describe such an environment,
such as DBMS, stored database, DBA, and catalog/data dictionary. Try to
specify all the entity types that can fully describe a database system and its
environment; then specify the relationship types among them, and draw an
ER diagram to describe such a general database environment.

Design an ER schema for keeping track of information about votes taken in
the U.S. House of Representatives during the current two-year congress-
ional session. The database needs to keep track of each U.S. STATE's Name
(e.g., “Texas’, ‘New York’, ‘California’) and include the Region of the state
(whose domain is {'Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, “West’}).
Each CONGRESS_PERSON in the House of Representatives is described by
his or her Name, plus the District represented, the Start_date when the con-
gressperson was first elected, and the political Party to which he or she
belongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’,
‘Other’}). The database keeps track of each BILL (i.e., proposed law),
including the Bill_name, the Date_of_vote on the bill, whether the bill
Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the
congressperson(s) who sponsored—that is, proposed—the bill). The data-
base also keeps track of how each congressperson voted on each bill (domain

Exercises
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Figure 3.21
An ER diagram for an AIRLINE database schema.

of Vote attribute is {'Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schema
diagram for this application. State clearly any assumptions you make.

3.22. A database is being constructed to keep track of the teams and games of a
sports league. A team has a number of players, not all of whom participate in
each game. It is desired to keep track of the players participating in each
game for each team, the positions they played in that game, and the result of



Exercises

the game. Design an ER schema diagram for this application, stating any

assumptions you make. Choose your favorite sport (e.g., so
football).

ccer, baseball,

3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database.

Each bank can have multiple branches, and each branch can
accounts and loans.

a. List the strong (nonweak) entity types in the ER diagram.

have multiple

b. Is there a weak entity type? If so, give its name, partial key, and identify-

ing relationship.

c. What constraints do the partial key and the identifying relationship of the

weak entity type specify in this diagram?

d. List the names of all relationship types, and specify the (min, max)
constraint on each participation of an entity type in a relationship type.

Justify your choices.
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Figure 3.22
An ER diagram for a BANK database schema.
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DEPARTMENT

EMPLOYEE

Figure 3.23

Part of an ER diagram
for a COMPANY
database.

e. List concisely the user requirements that led to this ER schema design.

f. Suppose that every customer must have at least one account but is
restricted to at most two loans at a time, and that a bank branch cannot
have more than 1,000 loans. How does this show up on the (min, max)
constraints?

3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may
work in up to two departments or may not be assigned to any department.
Assume that each department must have one and may have up to three
phone numbers. Supply (min, max) constraints on this diagram. State clearly
any additional assumptions you make. Under what conditions would the
relationship HAS_PHONE be redundant in this example?

3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may
not use a textbook, but that a text by definition is a book that is used in some
course. A course may not use more than five books. Instructors teach from
two to four courses. Supply (min, max) constraints on this diagram. State
clearly any additional assumptions you make. If we add the relationship
ADOPTS, to indicate the textbook(s) that an instructor uses for a course,
should it be a binary relationship between INSTRUCTOR and TEXT, or a
ternary relationship among all three entity types? What (min, max) con-
straints would you put on the relationship? Why?

Figure 3.24
Part of an ER diagram
for a COURSES

database. INSTRUCTOR COURSE

TEXT



3.26. Consider an entity type SECTION in a UNIVERSITY database, which describes

3.27.

3.28.

the section offerings of courses. The attributes of SECTION are
Section_number, Semester, Year, Course_number, Instructor, Room_no (where
section is taught), Building (where section is taught), Weekdays (domain is
the possible combinations of weekdays in which a section can be offered
{MWPF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possible
time periods during which sections are offered {*9-9:50 a.M.”, “10-10:50
AM., ..., 3:30-4:50 p.M.’, ‘5:30-6:20 p.M.’, and so on}). Assume that
Section_number is unique for each course within a particular semes-
ter/year combination (that is, if a course is offered multiple times during
a particular semester, its section offerings are numbered 1, 2, 3, and so
on). There are several composite keys for section, and some attributes
are components of more than one key. Identify three composite keys,
and show how they can be represented in an ER schema diagram.

Cardinality ratios often dictate the detailed design of a database. The cardi-
nality ratio depends on the real-world meaning of the entity types involved
and is defined by the specific application. For the following binary relation-
ships, suggest cardinality ratios based on the common-sense meaning of the
entity types. Clearly state any assumptions you make.

Entity 1 Cardinality Ratio Entity 2
1. STUDENT SOCIAL_SECURITY_CARD
2. STUDENT TEACHER
3. CLASSROOM WALL
4. COUNTRY CURRENT_PRESIDENT
5. COURSE TEXTBOOK
6. ITEM (that can be found ORDER
in an order)
7. STUDENT CLASS
8. CLASS INSTRUCTOR
9. INSTRUCTOR OFFICE
10. EBAY_AUCTION_ITEM EBAY_BID

Consider the ER schema for the MOVIES database in Figure 3.25.

Assume that MOVIES is a populated database. ACTOR is used as a generic term
and includes actresses. Given the constraints shown in the ER schema, respond
to the following statements with True, False, or Maybe. Assign a response of
Maybe to statements that, although not explicitly shown to be True, cannot be
proven False based on the schema as shown. Justify each answer.

a. There are no actors in this database that have been in no movies.
b. There are some actors who have acted in more than ten movies.
c. Some actors have done a lead role in multiple movies.

d. A movie can have only a maximum of two lead actors.

Exercises
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ALSO_A_
DIRECTOR

ACTOR_
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M

Figure 3.25
An ER diagram for a MOVIES database schema.

PRODUCES

[}

f. No producer has ever been an actor.

o Q

i. Some producers have been a director as well.

. Every director has been an actor in some movie.

. A producer cannot be an actor in some other movie.

. There are movies with more than a dozen actors.

. Most movies have one director and one producer.

k. Some movies have one director but several producers.

I. There are some actors who have done a lead role, directed a movie, and

produced a movie.

m. No movie has a director who also acted in that movie.

3.29. Given the ER schema for the MOVIES database in Figure 3.25, draw an
instance diagram using three movies that have been released recently.
Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS,
DIRECTORS involved; make up instances of the relationships as they exist in

reality for those movies.




3.30.

Laboratory Exercises

Ilustrate the UML diagram for Exercise 3.16. Your UML design should
observe the following requirements:

a. A student should have the ability to compute his/her GPA and add or
drop majors and minors.

b. Each department should be able to add or delete courses and hire or ter-
minate faculty.

c. Each instructor should be able to assign or change a student’s grade for a
course.

Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises

3.31.

3.32.

3.33.

Consider the UNIVERSITY database described in Exercise 3.16. Build the ER
schema for this database using a data modeling tool such as ERwin or
Rational Rose.

Consider a MAIL_ORDER database in which employees take orders for parts
from customers. The data requirements are summarized as follows:

B The mail order company has employees, each identified by a unique em-
ployee number, first and last name, and Zip Code.

® Each customer of the company is identified by a unique customer number,
first and last name, and Zip Code.

B Each part sold by the company is identified by a unique part number, a
part name, price, and quantity in stock.

® Each order placed by a customer is taken by an employee and is given a
unique order number. Each order contains specified quantities of one or
more parts. Each order has a date of receipt as well as an expected ship
date. The actual ship date is also recorded.

Design an entity-relationship diagram for the mail order database and build
the design using a data modeling tool such as ERwin or Rational Rose.

Consider a MOVIE database in which data is recorded about the movie
industry. The data requirements are summarized as follows:

B Each movie is identified by title and year of release. Each movie has a
length in minutes. Each has a production company, and each is classified
under one or more genres (such as horror, action, drama, and so forth).
Each movie has one or more directors and one or more actors appear in it.
Each movie also has a plot outline. Finally, each movie has zero or more
quotable quotes, each of which is spoken by a particular actor appearing
in the movie.

B Actors are identified by name and date of birth and appear in one or more
movies. Each actor has a role in the movie.
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3.34.

3.35.

B Directors are also identified by name and date of birth and direct one or
more movies. It is possible for a director to act in a movie (including one
that he or she may also direct).

B Production companies are identified by name and each has an address. A
production company produces one or more movies.

Design an entity-relationship diagram for the movie database and enter the
design using a data modeling tool such as ERwin or Rational Rose.

Consider a CONFERENCE_REVIEW database in which researchers submit
their research papers for consideration. Reviews by reviewers are recorded
for use in the paper selection process. The database system caters primarily
to reviewers who record answers to evaluation questions for each paper they
review and make recommendations regarding whether to accept or reject
the paper. The data requirements are summarized as follows:

B Authors of papers are uniquely identified by e-mail id. First and last names
are also recorded.

® Each paper is assigned a unique identifier by the system and is described
by a title, abstract, and the name of the electronic file containing the paper.

B A paper may have multiple authors, but one of the authors is designated as
the contact author.

m Reviewers of papers are uniquely identified by e-mail address. Each re-
viewer’s first name, last name, phone number, affiliation, and topics of in-
terest are also recorded.

B Each paper is assigned between two and four reviewers. A reviewer rates
each paper assigned to him or her on a scale of 1 to 10 in four categories:
technical merit, readability, originality, and relevance to the conference.
Finally, each reviewer provides an overall recommendation regarding
each paper.

® Each review contains two types of written comments: one to be seen by
the review committee only and the other as feedback to the author(s).

Design an entity-relationship diagram for the CONFERENCE_REVIEW data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

Consider the ER diagram for the AIRLINE database shown in Figure 3.21.
Build this design using a data modeling tool such as ERwin or Rational Rose.
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chapter Z—-L

The Enhanced Entity—-Relationship
(EER) Model

The ER modeling concepts discussed in Chapter 3
are sufficient for representing many database sche-
mas for traditional database applications, which include many data-processing
applications in business and industry. Since the late 1970s, however, designers of
database applications have tried to design more accurate database schemas that
reflect the data properties and constraints more precisely. This was particularly
important for newer applications of database technology, such as databases for
engineering design and manufacturing (CAD/CAM),! telecommunications, com-
plex software systems, and geographic information systems (GISs), among many
other applications. These types of databases have requirements that are more com-
plex than the more traditional applications. This led to the development of addi-
tional semantic data modeling concepts that were incorporated into conceptual
data models such as the ER model. Various semantic data models have been pro-
posed in the literature. Many of these concepts were also developed independently
in related areas of computer science, such as the knowledge representation area of
artificial intelligence and the object modeling area in software engineering.

In this chapter, we describe features that have been proposed for semantic data
models and show how the ER model can be enhanced to include these concepts,
which leads to the enhanced ER (EER) model.? We start in Section 4.1 by incorpo-
rating the concepts of class/subclass relationships and type inheritance into the ER
model. Then, in Section 4.2, we add the concepts of specialization and generalization.
Section 4.3 discusses the various types of constraints on specialization/generalization,
and Section 4.4 shows how the UNION construct can be modeled by including the

1CAD/CAM stands for computer-aided design/computer-aided manufacturing,

2EER has also been used to stand for extended ER model.
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concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY
database schema in the EER model and summarizes the EER model concepts by
giving formal definitions. We will use the terms object and entity interchangeably
in this chapter, because many of these concepts are commonly used in object-
oriented models.

We present the UML class diagram notation for representing specialization and
generalization in Section 4.6, and we briefly compare these with EER notation and
concepts. This serves as an example of alternative notation, and is a continuation
of Section 3.8, which presented basic UML class diagram notation that corre-
sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-
tions that are used as the basis of many semantic data models. Section 4.8
summarizes the chapter.

For a detailed introduction to conceptual modeling, Chapter 4 should be consid-
ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-
eling is desired, this chapter may be omitted. Alternatively, the reader may choose
to skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

4.1 Subclasses, Superclasses, and Inheritance

The EER model includes all the modeling concepts of the ER model that were pre-
sented in Chapter 3. In addition, it includes the concepts of subclass and superclass
and the related concepts of specialization and generalization (see Sections 4.2
and 4.3). Another concept included in the EER model is that of a category or union
type (see Section 4.4), which is used to represent a collection of objects (entities)
that is the union of objects of different entity types. Associated with these concepts
is the important mechanism of attribute and relationship inheritance. Unfortu-
nately, no standard terminology exists for these concepts, so we use the most com-
mon terminology. Alternative terminology is given in footnotes. We also describe a
diagrammatic technique for displaying these concepts when they arise in an EER
schema. We call the resulting schema diagrams enhanced ER or EER diagrams.

The first enhanced ER (EER) model concept we take up is that of a subtype or
subclass of an entity type. As we discussed in Chapter 3, the name of an entity type is
used to represent both a type of entity and the entity set or collection of entities of that
type that exist in the database. For example, the entity type EMPLOYEE describes the
type (that is, the attributes and relationships) of each employee entity, and also refers
to the current set of EMPLOYEE entities in the COMPANY database. In many cases an
entity type has numerous subgroupings or subtypes of its entities that are meaningful
and need to be represented explicitly because of their significance to the database
application. For example, the entities that are members of the EMPLOYEE entity
type may be distinguished further into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE, and so on. The set or
collection of entities in each of the latter groupings is a subset of the entities that
belong to the EMPLOYEE entity set, meaning that every entity that is a member of
one of these subgroupings is also an employee. We call each of these subgroupings a
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subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is
called the superclass or supertype for each of these subclasses. Figure 4.1 shows how
to represent these concepts diagramatically in EER diagrams. (The circle notation in
Figure 4.1 will be explained in Section 4.2.)

We call the relationship between a superclass and any one of its subclasses a
superclass/subclass or supertype/subtype or simply class/subclass relationship.
In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN
are two class/subclass relationships. Notice that a member entity of the subclass
represents the same real-world entity as some member of the superclass; for
example, a SECRETARY entity Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’
Hence, the subclass member is the same as the entity in the superclass, but in a
distinct specific role. When we implement a superclass/subclass relationship in
the database system, however, we may represent a member of the subclass as a
distinct database object—say, a distinct record that is related via the key attribute
to its superclass entity. In Section 9.2, we discuss various options for representing
superclass/subclass relationships in relational databases.

An entity cannot exist in the database merely by being a member of a subclass; it
must also be a member of the superclass. Such an entity can be included optionally
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as a member of any number of subclasses. For example, a salaried employee who is
also an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE
of the EMPLOYEE entity type. However, it is not necessary that every entity in a
superclass is a member of some subclass.

An important concept associated with subclasses (subtypes) is that of type
inheritance. Recall that the type of an entity is defined by the attributes it possesses
and the relationship types in which it participates. Because an entity in the subclass
represents the same real-world entity from the superclass, it should possess values
for its specific attributes as well as values of its attributes as a member of the super-
class. We say that an entity that is a member of a subclass inherits all the attributes of
the entity as a member of the superclass. The entity also inherits all the relationships
in which the superclass participates. Notice that a subclass, with its own specific (or
local) attributes and relationships together with all the attributes and relationships it
inherits from the superclass, can be considered an entity type in its own right.*

4.2 Specialization and Generalization

4.21 Specialization

Specialization is the process of defining a set of subclasses of an entity type; this
entity type is called the superclass of the specialization. The set of subclasses that
forms a specialization is defined on the basis of some distinguishing characteristic
of the entities in the superclass. For example, the set of subclasses {SECRETARY,
ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-
tinguishes among employee entities based on the job type of each employee.
We may have several specializations of the same entity type based on different
distinguishing characteristics. For example, another specialization of the
EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,
HOURLY_EMPLOYEEY}; this specialization distinguishes among employees based on
the method of pay.

Figure 4.1 shows how we represent a specialization diagrammatically in an EER
diagram. The subclasses that define a specialization are attached by lines to a circle
that represents the specialization, which is connected in turn to the superclass. The
subset symbol on each line connecting a subclass to the circle indicates the direction
of the superclass/subclass relationship.® Attributes that apply only to entities of a
particular subclass—such as TypingSpeed of SECRETARY —are attached to the rect-
angle representing that subclass. These are called specific (or local) attributes of
the subclass. Similarly, a subclass can participate in specific relationship types,
such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO

“In some object-oriented programming languages, a common restriction is that an entity (or object) has
only one type. This is generally too restrictive for conceptual database modeling.

5There are many alternative notations for specialization; we present the UML notation in Section 4.6 and
other proposed notations in Appendix A.
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relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1
and additional EER diagram notation shortly.

Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY,
ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to
a subclass represents the same real-world entity as the entity connected to it in the
EMPLOYEE superclass, even though the same entity is shown twice; for example, e,
is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests,
a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat
resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-
ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-
class/subclass relationship the entity in the subclass is the same real-world entity as
the entity in the superclass but is playing a specialized role—for example, an
EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in
the role of TECHNICIAN.

There are two main reasons for including class/subclass relationships and special-
izations. The first is that certain attributes may apply to some but not all entities of
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the superclass entity type. A subclass is defined in order to group the entities to
which these attributes apply. The members of the subclass may still share the
majority of their attributes with the other members of the superclass. For example,
in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed,
whereas the ENGINEER subclass has the specific attribute Eng_type, but
SECRETARY and ENGINEER share their other inherited attributes from the
EMPLOYEE entity type.

The second reason for using subclasses is that some relationship types may be par-
ticipated in only by entities that are members of the subclass. For example, if only
HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact by
creating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclass
to an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-
trated in Figure 4.1.

4.2.2 Generalization

We can think of a reverse process of abstraction in which we suppress the differences
among several entity types, identify their common features, and generalize them
into a single superclass of which the original entity types are special subclasses. For
example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because
they have several common attributes, they can be generalized into the entity type
VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

(a)

(b)

Vehicle_id

Max_speed

No_of_passengers

Vehicle_id

License_plate_no

Vehicle_id
VEHICLE
|

No_of_passengers o

Tonnage



4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

generalized superclass VEHICLE. We use the term generalization to refer to the pro-
cess of defining a generalized entity type from the given entity types.

Notice that the generalization process can be viewed as being functionally the
inverse of the specialization process; we can view {CAR, TRUCK} as a specialization
of VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK. A
diagrammatic notation to distinguish between generalization and specialization is
used in some design methodologies. An arrow pointing to the generalized super-
class represents a generalization process, whereas arrows pointing to the special-
ized subclasses represent a specialization process. We will not use this notation
because the decision as to which process was followed in a particular situation is
often subjective.

So far we have introduced the concepts of subclasses and superclass/subclass rela-
tionships, as well as the specialization and generalization processes. In general, a
superclass or subclass represents a collection of entities of the same type and hence
also describes an entity type; that is why superclasses and subclasses are all shown in
rectangles in EER diagrams, like entity types.

4.3 Constraints and Characteristics
of Specialization and Generalization
Hierarchies

First, we discuss constraints that apply to a single specialization or a single general-
ization. For brevity, our discussion refers only to specialization even though it
applies to both specialization and generalization. Then, we discuss differences
between specialization/generalization lattices (multiple inheritance) and hierarchies
(single inheritance), and we elaborate on the differences between the specialization
and generalization processes during conceptual database schema design.

4.3.1 Constraints on Specialization and Generalization

In general, we may have several specializations defined on the same entity type (or
superclass), as shown in Figure 4.1. In such a case, entities may belong to subclasses
in each of the specializations. A specialization may also consist of a single subclass
only, such as the {(MANAGER} specialization in Figure 4.1; in such a case, we do not
use the circle notation.

In some specializations we can determine exactly the entities that will become
members of each subclass by placing a condition on the value of some attribute of
the superclass. Such subclasses are called predicate-defined (or condition-defined)
subclasses. For example, if the EMPLOYEE entity type has an attribute Job_type, as
shown in Figure 4.4, we can specify the condition of membership in the
SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the
defining predicate of the subclass. This condition is a constraint specifying that
exactly those entities of the EMPLOYEE entity type whose attribute value for Job_type
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Figure 4.4

EER diagram notation
for an attribute-defined
specialization on
Job_type.

Typing_speed

‘Technician’
| SECRETARY | | TECHNICIAN | | ENGINEER |

is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass by
writing the predicate condition next to the line that connects the subclass to the
specialization circle.

If all subclasses in a specialization have their membership condition on the same
attribute of the superclass, the specialization itself is called an attribute-defined
specialization, and the attribute is called the defining attribute of the special-
ization.® In this case, all the entities with the same value for the attribute belong to
the same subclass. We display an attribute-defined specialization by placing the
defining attribute name next to the arc from the circle to the superclass, as shown
in Figure 4.4.

When we do not have a condition for determining membership in a subclass, the
subclass is called user-defined. Membership in such a subclass is determined by the
database users when they apply the operation to add an entity to the subclass; hence,
membership is specified individually for each entity by the user, not by any condi-
tion that may be evaluated automatically.

Two other constraints may apply to a specialization. The first is the disjointness
constraint, which specifies that the subclasses of the specialization must be disjoint
sets. This means that an entity can be a member of at most one of the subclasses of
the specialization. A specialization that is attribute-defined implies the disjointness
constraint (if the attribute used to define the membership predicate is single-
valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint. The
d notation also applies to user-defined subclasses of a specialization that must be
disjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}
in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities

6Such an attribute is called a discriminator or discriminating attribute in UML terminology.
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Manufacture_date

Batch_no i
Supplier_name

| MANUFACTURED_PART | | PURCHASED_PART |

Figure 4.5

EER diagram notation
for an overlapping
(nondisjoint)
specialization.

may be overlapping; that is, the same (real-world) entity may be a member of more
than one subclass of the specialization. This case, which is the default, is displayed
by placing an o in the circle, as shown in Figure 4.5.

The second constraint on specialization is called the completeness (or totalness)
constraint, which may be total or partial. A total specialization constraint specifies
that every entity in the superclass must be a member of at least one subclass
in the specialization. For example, if every EMPLOYEE must be either an
HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE, then the specialization
{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specialization
of EMPLOYEE. This is shown in EER diagrams by using a double line to connect
the superclass to the circle. A single line is used to display a partial specialization,
which allows an entity not to belong to any of the subclasses. For example, if some
EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER,
TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial.”

Notice that the disjointness and completeness constraints are independent. Hence,
we have the following four possible constraints on a specialization:

= Disjoint, total

® Disjoint, partial

® Overlapping, total

® Overlapping, partial
Of course, the correct constraint is determined from the real-world meaning that
applies to each specialization. In general, a superclass that was identified through

the generalization process usually is total, because the superclass is derived from the
subclasses and hence contains only the entities that are in the subclasses.

Certain insertion and deletion rules apply to specialization (and generalization) as a
consequence of the constraints specified earlier. Some of these rules are as follows:

B Deleting an entity from a superclass implies that it is automatically deleted
from all the subclasses to which it belongs.

"The notation of using single or double lines is similar to that for partial or total participation of an entity
type in a relationship type, as described in Chapter 3.
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B Inserting an entity in a superclass implies that the entity is mandatorily
inserted in all predicate-defined (or attribute-defined) subclasses for which
the entity satisfies the defining predicate.

® Inserting an entity in a superclass of a total specialization implies that
the entity is mandatorily inserted in at least one of the subclasses of the
specialization.

The reader is encouraged to make a complete list of rules for insertions and dele-
tions for the various types of specializations.

4.3.2 Specialization and Generalization Hierarchies
and Lattices

A subclass itself may have further subclasses specified on it, forming a hierarchy or
a lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of
EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents the
real-world constraint that every engineering manager is required to be an engineer.
A specialization hierarchy has the constraint that every subclass participates as a
subclass in only one class/subclass relationship; that is, each subclass has only one
parent, which results in a tree structure or strict hierarchy. In contrast, for a
specialization lattice, a subclass can be a subclass in more than one class/subclass
relationship. Hence, Figure 4.6 is a lattice.

Figure 4.7 shows another specialization lattice of more than one level. This may
be part of a conceptual schema for a UNIVERSITY database. Notice that this
arrangement would have been a hierarchy except for the STUDENT_ASSISTANT
subclass, which is a subclass in two distinct class/subclass relationships.

Figure 4.6

A specialization lattice with shared subclass

ENGINEERING_MANAGER.

EMPLOYEE

SECRETARY || TECHNICIAN || ENGINEER || MANAGER |

| HOURLY_EMPLOYEE

| SALARIED_EMPLOYEE |
\ j/

ENGINEERING_MANAGER |
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Figure 4.7

A specialization lattice
with multiple inheritance
for a UNIVERSITY

database.
| EMPLOYEE | ]ALUMNUS\ | STUDENT |
De
STAFF | FACULTY | | STUDENT_ GRADUATE_ | |UNDERGRADUATE_

ASSISTANT STUDENT STUDENT
/&\Degree - b

| RESEARCH_ASSISTANT| | TEACHING_ASSISTANT |

The requirements for the part of the UNIVERSITY database shown in Figure 4.7
are the following:

1. The database keeps track of three types of persons: employees, alumni, and
students. A person can belong to one, two, or all three of these types. Each
person has a name, SSN, sex, address, and birth date.

2. Every employee has a salary, and there are three types of employees: fac-
ulty, staff, and student assistants. Each employee belongs to exactly one
of these types. For each alumnus, a record of the degree or degrees that
he or she earned at the university is kept, including the name of the
degree, the year granted, and the major department. Each student has a
major department.

3. Each faculty has a rank, whereas each staff member has a staff position. Stu-
dent assistants are classified further as either research assistants or teaching
assistants, and the percent of time that they work is recorded in the database.
Research assistants have their research project stored, whereas teaching
assistants have the current course they work on.
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4. Students are further classified as either graduate or undergraduate, with
the specific attributes degree program (M.S., Ph.D., M.B.A., and so on)
for graduate students and class (freshman, sophomore, and so on) for
undergraduates.

In Figure 4.7, all person entities represented in the database are members of
the PERSON entity type, which is specialized into the subclasses {EMPLOYEE,
ALUMNUS, STUDENT}. This specialization is overlapping; for example, an alum-
nus may also be an employee and a student pursuing an advanced degree. The
subclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT}, whereas EMPLOYEE is the superclass for the
specialization {STUDENT_ASSISTANT, FACULTY, STAFF}. Notice that
STUDENT_ASSISTANT is also a subclass of STUDENT. Finally, STUDENT_ASSISTANT
is the superclass for the specialization into {RESEARCH_ASSISTANT,
TEACHING_ASSISTANT]}.

In such a specialization lattice or hierarchy, a subclass inherits the attributes not
only of its direct superclass, but also of all its predecessor superclasses all the way to
the root of the hierarchy or lattice if necessary. For example, an entity in
GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a
PERSON. Notice that an entity may exist in several leaf nodes of the hierarchy,
where a leaf node is a class that has no subclasses of its own. For example, a member
of GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT.

A subclass with more than one superclass is called a shared subclass, such as
ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as
multiple inheritance, where the shared subclass ENGINEERING_MANAGER
directly inherits attributes and relationships from multiple superclasses. Notice
that the existence of at least one shared subclass leads to a lattice (and hence to
multiple inheritance); if no shared subclasses existed, we would have a hierarchy
rather than a lattice and only single inheritance would exist. An important rule
related to multiple inheritance can be illustrated by the example of the shared
subclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes from
both EMPLOYEE and STUDENT. Here, both EMPLOYEE and STUDENT inherit the
same attributes from PERSON. The rule states that if an attribute (or relation-
ship) originating in the same superclass (PERSON) is inherited more than once
via different paths (EMPLOYEE and STUDENT) in the lattice, then it should be
included only once in the shared subclass (STUDENT_ASSISTANT). Hence, the
attributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-
class in Figure 4.7.

It is important to note here that some models and languages are limited to single
inheritance and do not allow multiple inheritance (shared subclasses). It is also
important to note that some models do not allow an entity to have multiple
types, and hence an entity can be a member of only one leaf class.® In such a
model, it is necessary to create additional subclasses as leaf nodes to cover all

8In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.
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possible combinations of classes that may have some entity that belongs to all
these classes simultaneously. For example, in the overlapping specialization of
PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it would
be necessary to create seven subclasses of PERSON in order to cover all possible
types of entities: E, A, S, E_A, E_S, A_S, and E_A_S. Obviously, this can lead to
extra complexity.

Although we have used specialization to illustrate our discussion, similar concepts
apply equally to generalization, as we mentioned at the beginning of this section.
Hence, we can also speak of generalization hierarchies and generalization lattices.

4.3.3 Utilizing Specialization and Generalization in
Refining Conceptual Schemas

Now we elaborate on the differences between the specialization and generalization
processes and how they are used to refine conceptual schemas during conceptual
database design. In the specialization process, the database designers typically start
with an entity type and then define subclasses of the entity type by successive spe-
cialization; that is, they repeatedly define more specific groupings of the entity
type. For example, when designing the specialization lattice in Figure 4.7, we may
first specify an entity type PERSON for a university database. Then we discover
that three types of persons will be represented in the database: university employ-
ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS,
STUDENT}. The overlapping constraint is chosen because a person may belong
to more than one of the subclasses. We specialize EMPLOYEE further into
{STAFF, FACULTY, STUDENT_ASSISTANT}, and specialize STUDENT into
{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}. Finally, we specialize
STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT]}.
This process is called top-down conceptual refinement. So far, we have a hier-
archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it is
also a subclass of STUDENT, leading to the lattice.

It is possible to arrive at the same hierarchy or lattice from the other direction. In
such a case, the process involves generalization rather than specialization and cor-
responds to a bottom-up conceptual synthesis. For example, the database design-
ers may first discover entity types such as STAFF, FACULTY, ALUMNUS,
GRADUATE_STUDENT, UNDERGRADUATE_STUDENT, RESEARCH_ASSISTANT,
TEACHING_ASSISTANT, and so on; then they generalize {GRADUATE_STUDENT,
UNDERGRADUATE_STUDENT} into STUDENT; then {RESEARCH_ASSISTANT,
TEACHING_ASSISTANT} into STUDENT_ASSISTANT; then {STAFF, FACULTY,
STUDENT_ASSISTANT} into EMPLOYEE; and finally {EMPLOYEE, ALUMNUS, STUDENT}
into PERSON.

The final design of hierarchies or lattices resulting from either process may be
identical; the only difference relates to the manner or order in which the schema
superclasses and subclasses were created during the design process. In practice, it
is likely that a combination of the two processes is employed. Notice that the
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notion of representing data and knowledge by using superclass/subclass hierar-
chies and lattices is quite common in knowledge-based systems and expert sys-
tems, which combine database technology with artificial intelligence techniques.
For example, frame-based knowledge representation schemes closely resemble
class hierarchies. Specialization is also common in software engineering design
methodologies that are based on the object-oriented paradigm.

4.4 Modeling of UNION Types
Using Categories

It is sometimes necessary to represent a collection of entities from different entity
types. In this case, a subclass will represent a collection of entities that is a subset of
the UNION of entities from distinct entity types; we call such a subclass a union type
ora category.9

For example, suppose that we have three entity types: PERSON, BANK, and
COMPANY. In a database for motor vehicle registration, an owner of a vehicle can
be a person, a bank (holding a lien on a vehicle), or a company. We need to create
a class (collection of entities) that includes entities of all three types to play the
role of vehicle owner. A category (union type) OWNER that is a subclass of the
UNION of the three entity sets of COMPANY, BANK, and PERSON can be created
for this purpose. We display categories in an EER diagram as shown in Figure 4.8.
The superclasses COMPANY, BANK, and PERSON are connected to the circle with
the U symbol, which stands for the set union operation. An arc with the subset
symbol connects the circle to the (subclass) OWNER category. In Figure 4.8 we
have two categories: OWNER, which is a subclass (subset) of the union of PERSON,
BANK, and COMPANY; and REGISTERED_VEHICLE, which is a subclass (subset) of
the union of CAR and TRUCK.

A category has two or more superclasses that may represent collections of enti-
ties from distinct entity types, whereas other superclass/subclass relationships
always have a single superclass. To better understand the difference,
we can compare a category, such as OWNER in Figure 4.8, with the
ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of
each of the three superclasses ENGINEER, MANAGER, and SALARIED_EMPLOYEE,
so an entity that is a member of ENGINEERING_MANAGER must exist in all
three collections. This represents the constraint that an engineering manager must
be an ENGINEER, a MANAGER, and a SALARIED_EMPLOYEE; that is, the
ENGINEERING_MANAGER entity set is a subset of the intersection of the three
entity sets. On the other hand, a category is a subset of the union of its super-
classes. Hence, an entity that is a member of OWNER must exist in only one of the
superclasses. This represents the constraint that an OWNER may be a COMPANY,
a BANK, or a PERSON in Figure 4.8.

%0ur use of the term category is based on the ECR (entity—category—relationship) model (Elmasri et al,
1985).
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| REGISTERED_VEHICLE |

il

Vehicle_id
Figure 4.8
@ @ Two categories (union
types): OWNER and
@ mode REGISTERED_VEHICLE.

Attribute inheritance works more selectively in the case of categories. For exam-
ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY, a
PERSON, or a BANK, depending on the superclass to which the entity belongs. On
the other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6)
inherits all the attributes of its superclasses SALARIED_EMPLOYEE, ENGINEER,
and MANAGER.

It is interesting to note the difference between the category REGISTERED_VEHICLE
(Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig-
ure 4.3(b), every car and every truck is a VEHICLE; but in Figure 4.8, the
REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily
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all of them (for example, some cars or trucks may not be registered). In general,
a specialization or generalization such as that in Figure 4.3(b), if it were partial,
would not preclude VEHICLE from containing other types of entities, such as
motorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8
implies that only cars and trucks, but not other types of entities, can be members
of REGISTERED_VEHICLE.

A category can be total or partial. A total category holds the union of all entities in
its superclasses, whereas a partial category can hold a subset of the union. A total
category is represented diagrammatically by a double line connecting the category
and the circle, whereas a partial category is indicated by a single line.

The superclasses of a category may have different key attributes, as demonstrated
by the OWNER category in Figure 4.8, or they may have the same key attribute, as
demonstrated by the REGISTERED_VEHICLE category. Notice that if a category is
total (not partial), it may be represented alternatively as a total specialization (or a
total generalization). In this case, the choice of which representation to use is sub-
jective. If the two classes represent the same type of entities and share numerous
attributes, including the same key attributes, specialization/generalization is pre-
ferred; otherwise, categorization (union type) is more appropriate.

It is important to note that some modeling methodologies do not have union
types. In these models, a union type must be represented in a roundabout way
(see Section 9.2).

4.5 A Sample UNIVERSITY EER Schema,
Design Choices, and Formal Definitions

In this section, we first give an example of a database schema in the EER model to
illustrate the use of the various concepts discussed here and in Chapter 3. Then, we
discuss design choices for conceptual schemas, and finally we summarize the EER
model concepts and define them formally in the same manner in which we formally
defined the concepts of the basic ER model in Chapter 3.

4.5.1 A Different UNIVERSITY Database Example

Consider a UNIVERSITY database that has different requirements from the UNIVERSITY
database presented in Section 3.10. This database keeps track of students and their
majors, transcripts, and registration as well as of the university’s course offerings.
The database also keeps track of the sponsored research projects of faculty and
graduate students. This schema is shown in Figure 4.9. A discussion of the require-
ments that led to this schema follows.

For each person, the database maintains information on the person’s Name [Namel],
Social Security number [Ssn], address [Address], sex [Sex], and birth date [Bdate].
Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT.
Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research,
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for a different UNIVERSITY
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visiting, and so on), office [Foffice], office phone [Fphone], and salary [Salary]. All fac-
ulty members are related to the academic department(s) with which they are affiliated
[BELONGS] (a faculty member can be associated with several departments, so the
relationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-
more =2, ..., MS student = 5, PhD student = 6). Each STUDENT is also related to his
or her major and minor departments (if known) [MAJOR] and [MINOR], to the course
sections he or she is currently attending [REGISTERED], and to the courses completed
[TRANSCRIPT]. Each TRANSCRIPT instance includes the grade the student received
[Grade] in a section of a course.

GRAD_STUDENT is a subclass of STUDENT, with the defining predicate (Class = 5 OR
Class = 6). For each graduate student, we keep a list of previous degrees in a compos-
ite, multivalued attribute [Degrees]. We also relate the graduate student to a faculty
advisor [ADVISOR] and to a thesis committee [COMMITTEE], if one exists.

An academic department has the attributes name [Dname], telephone [Dphone], and
office number [Office] and is related to the faculty member who is its chairperson
[CHAIRS] and to the college to which it belongs [CD]. Each college has attributes col-
lege name [Cnamel], office number [Coffice], and the name of its dean [Dean].

A course has attributes course number [C#], course name [Cname], and course
description [Cdesc]. Several sections of each course are offered, with each section
having the attributes section number [Sec#] and the year and quarter in which the
section was offered ([Year] and [Qtr]).!” Section numbers uniquely identify each
section. The sections being offered during the current quarter are in a subclass
CURRENT_SECTION of SECTION, with the defining predicate Qtr = Current_gtr and
Year = Current_year. Each section is related to the instructor who taught or is teach-
ing it ([TEACH]), if that instructor is in the database.

The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and
GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-
ported by teaching or research. Finally, the entity type GRANT keeps track of research
grants and contracts awarded to the university. Each grant has attributes grant title
[Title], grant number [No], the awarding agency [Agencyl], and the starting date
[St_date]. A grant is related to one principal investigator [PI] and to all researchers it
supports [SUPPORTI. Each instance of support has as attributes the starting date of
support [Start], the ending date of the support (if known) [End], and the percentage of
time being spent on the project [Time] by the researcher being supported.

4.5.2 Design Choices for Specialization/Generalization

It is not always easy to choose the most appropriate conceptual design for a
database application. In Section 3.7.3, we presented some of the typical issues
that confront a database designer when choosing among the concepts of entity

1%We assume that the quarter system rather than the semester system is used in this university.
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types, relationship types, and attributes to represent a particular miniworld sit-
uation as an ER schema. In this section, we discuss design guidelines and
choices for the EER concepts of specialization/generalization and categories
(union types).

As we mentioned in Section 3.7.3, conceptual database design should be considered
as an iterative refinement process until the most suitable design is reached. The fol-
lowing guidelines can help to guide the design process for EER concepts:

In general, many specializations and subclasses can be defined to make
the conceptual model accurate. However, the drawback is that the
design becomes quite cluttered. It is important to represent only those
subclasses that are deemed necessary to avoid extreme cluttering of the
conceptual schema.

If a subclass has few specific (local) attributes and no specific relationships,
it can be merged into the superclass. The specific attributes would hold NULL
values for entities that are not members of the subclass. A type attribute
could specify whether an entity is a member of the subclass.

Similarly, if all the subclasses of a specialization/generalization have few spe-
cific attributes and no specific relationships, they can be merged into the
superclass and replaced with one or more type attributes that specify the
subclass or subclasses that each entity belongs to (see Section 9.2 for how
this criterion applies to relational databases).

Union types and categories should generally be avoided unless the situation
definitely warrants this type of construct, which does occur in some practi-
cal situations. If possible, we try to model using specialization/generaliza-
tion as discussed at the end of Section 4.4.

The choice of disjoint/overlapping and total/partial constraints on special-
ization/generalization is driven by the rules in the miniworld being mod-
eled. If the requirements do not indicate any particular constraints, the
default would generally be overlapping and partial, since this does not spec-
ify any restrictions on subclass membership.

As an example of applying these guidelines, consider Figure 4.6, where no specific
(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE
entity type and add the following attributes to EMPLOYEE:

An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘“Technician’}
would indicate which subclass in the first specialization each employee
belongs to.

An attribute Pay_method whose value set {‘Salaried’, ‘Hourly’} would

indicate which subclass in the second specialization each employee
belongs to.

125



126

Chapter 4 The Enhanced Entity—Relationship (EER) Model

B An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicate
whether an individual employee entity is a manager or not.

4.5.3 Formal Definitions for the EER Model Concepts

We now summarize the EER model concepts and give formal definitions. A class'!
defines a type of entity and represents a set or collection of entities of that type; this
includes any of the EER schema constructs that correspond to collections of enti-
ties, such as entity types, subclasses, superclasses, and categories. A subclass S is a
class whose entities must always be a subset of the entities in another class, called
the superclass C of the superclass/subclass (or IS-A) relationship. We denote
such a relationship by C/S. For such a superclass/subclass relationship, we must
always have

ScC
A specialization Z = {S;, S,, ..., S,;} is a set of subclasses that have the same super-
class G; that is, G/S; is a superclass/subclass relationship fori =1, 2, ..., n. G is called

a generalized entity type (or the superclass of the specialization, or a generalization
of the subclasses {S1, S5, ..., S,;} ). Z is said to be total if we always (at any point in
time) have

n
) Si= G
i=1

Otherwise, Z is said to be partial. Z is said to be disjoint if we always have

SiN S; =D (empty set) for i #

Otherwise, Z is said to be overlapping.

A subclass S of C is said to be predicate-defined if a predicate p on the attributes of
C is used to specify which entities in C are members of S; that is, S = C[p], where
C[p] is the set of entities in C that satisfy p. A subclass that is not defined by a
predicate is called user-defined.

A specialization Z (or generalization G) is said to be attribute-defined if a
predicate (A = ¢;), where A is an attribute of G and ¢; is a constant value from
the domain of A, is used to specify membership in each subclass S; in Z. Notice
that if ¢; # ¢ for i # j, and A is a single-valued attribute, then the specialization
will be disjoint.

A category T is a class that is a subset of the union of # defining superclasses D1, D,,
...» Dy, n> 1 and is formally specified as follows:

Tc (D] |\ DZ e U Di’l)

""The use of the word class here refers to a collection (set) of entities, which differs from its more
common use in object-oriented programming languages such as C++. In C++, a class is a structured
type definition along with its applicable functions (operations).
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A predicate p; on the attributes of D; can be used to specify the members of each D;
that are members of T. If a predicate is specified on every D;, we get

T = (Ds[p1] U Dy[ps] ... U Dylp,))

We should now extend the definition of relationship type given in Chapter 3 by
allowing any class—not only any entity type—to participate in a relationship.
Hence, we should replace the words entity type with class in that definition. The
graphical notation of EER is consistent with ER because all classes are represented
by rectangles.

4.6 Example of Other Notation: Representing
Specialization and Generalization in UML
Class Diagrams

We now discuss the UML notation for generalization/specialization and inheri-
tance. We already presented basic UML class diagram notation and terminology
in Section 3.8. Figure 4.10 illustrates a possible UML class diagram corresponding
to the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-
tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontal
line, which has a triangle connecting the horizontal line through another vertical
line to the superclass. A blank triangle indicates a specialization/generalization
with the disjoint constraint, and a filled triangle indicates an overlapping con-
straint. The root superclass is called the base class, and the subclasses (leaf nodes)
are called leaf classes.

The preceding discussion and the example in Figure 4.10, as well as the presenta-
tion in Section 3.8, gave a brief overview of UML class diagrams and terminology.
We focused on the concepts that are relevant to ER and EER database modeling
rather than on those concepts that are more relevant to software engineering. In
UML, there are many details that we have not discussed because they are outside
the scope of this text and are mainly relevant to software engineering. For example,
classes can be of various types:

B Abstract classes define attributes and operations but do not have objects
corresponding to those classes. These are mainly used to specify a set of
attributes and operations that can be inherited.

B Concrete classes can have objects (entities) instantiated to belong to the
class.

m Template classes specify a template that can be further used to define
other classes.

In database design, we are mainly concerned with specifying concrete classes whose
collections of objects are permanently (or persistently) stored in the database. The
bibliographic notes at the end of this chapter give some references to books that
describe complete details of UML.
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PERSON

Name

Ssn
Birth_date
Sex
Address

age
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EMPLOYEE ALUMNUS DEGREE STUDENT
Salary . Year Major_dept
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Major
STAFF FACULTY STUDENT_ASSISTANT
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RESEARCH_ TEACHING_ GRADUATE_ UNDERGRADUATE_
ASSISTANT ASSISTANT STUDENT STUDENT
Project Course Degree_program Class

change_project

assign_to_course

change_degree_program

change_classification

Figure 4.10

A UML class diagram corresponding to the EER diagram in Figure 4.7,
illustrating UML notation for specialization/generalization.

4.7 Data Abstraction, Knowledge
Representation, and Ontology Concepts

In this section, we discuss in general terms some of the modeling concepts that we
described quite specifically in our presentation of the ER and EER models in Chap-
ter 3 and earlier in this chapter. This terminology is not only used in conceptual



4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 129

data modeling but also in artificial intelligence literature when discussing
knowledge representation (KR). This section discusses the similarities and differ-
ences between conceptual modeling and knowledge representation, and introduces
some of the alternative terminology and a few additional concepts.

The goal of KR techniques is to develop concepts for accurately modeling some domain
of knowledge by creating an ontology'? that describes the concepts of the domain
and how these concepts are interrelated. The ontology is used to store and manipu-
late knowledge for drawing inferences, making decisions, or answering questions.
The goals of KR are similar to those of semantic data models, but there are some
important similarities and differences between the two disciplines:

® Both disciplines use an abstraction process to identify common properties and
important aspects of objects in the miniworld (also known as domain of discourse
in KR) while suppressing insignificant differences and unimportant details.

B Both disciplines provide concepts, relationships, constraints, operations,
and languages for defining data and representing knowledge.

m KR is generally broader in scope than semantic data models. Different forms
of knowledge, such as rules (used in inference, deduction, and search),
incomplete and default knowledge, and temporal and spatial knowledge, are
represented in KR schemes. Database models are being expanded to include
some of these concepts (see Chapter 26).

B KR schemes include reasoning mechanisms that deduce additional facts
from the facts stored in a database. Hence, whereas most current database
systems are limited to answering direct queries, knowledge-based systems
using KR schemes can answer queries that involve inferences over the
stored data. Database technology is being extended with inference mecha-
nisms (see Section 26.5).

B Whereas most data models concentrate on the representation of database
schemas, or meta-knowledge, KR schemes often mix up the schemas with
the instances themselves in order to provide flexibility in representing
exceptions. This often results in inefficiencies when these KR schemes are
implemented, especially when compared with databases and when a large
amount of structured data (facts) needs to be stored.

We now discuss four abstraction concepts that are used in semantic data models,
such as the EER model, as well as in KR schemes: (1) classification and instantia-
tion, (2) identification, (3) specialization and generalization, and (4) aggregation
and association. The paired concepts of classification and instantiation are inverses
of one another, as are generalization and specialization. The concepts of aggrega-
tion and association are also related. We discuss these abstract concepts and their
relation to the concrete representations used in the EER model to clarify the data
abstraction process and to improve our understanding of the related process of
conceptual schema design. We close the section with a brief discussion of ontology,
which is being used widely in recent knowledge representation research.

2An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.
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4.7.1 Classification and Instantiation

The process of classification involves systematically assigning similar objects/enti-
ties to object classes/entity types. We can now describe (in DB) or reason about (in
KR) the classes rather than the individual objects. Collections of objects that share
the same types of attributes, relationships, and constraints are classified into classes
in order to simplify the process of discovering their properties. Instantiation is the
inverse of classification and refers to the generation and specific examination of
distinct objects of a class. An object instance is related to its object class by the
IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-
grams do not display instances, the UML diagrams allow a form of instantiation by
permitting the display of individual objects. We did not describe this feature in our
introduction to UML class diagrams.

In general, the objects of a class should have a similar type structure. However,
some objects may display properties that differ in some respects from the other
objects of the class; these exception objects also need to be modeled, and KR
schemes allow more varied exceptions than do database models. In addition, cer-
tain properties apply to the class as a whole and not to the individual objects; KR
schemes allow such class properties. UML diagrams also allow specification of
class properties.

In the EER model, entities are classified into entity types according to their basic
attributes and relationships. Entities are further classified into subclasses and cat-
egories based on additional similarities and differences (exceptions) among them.
Relationship instances are classified into relationship types. Hence, entity types,
subclasses, categories, and relationship types are the different concepts that are
used for classification in the EER model. The EER model does not provide
explicitly for class properties, but it may be extended to do so. In UML, objects
are classified into classes, and it is possible to display both class properties and
individual objects.

Knowledge representation models allow multiple classification schemes in
which one class is an instance of another class (called a meta-class). Notice that
this cannot be represented directly in the EER model, because we have only two
levels—classes and instances. The only relationship among classes in the EER
model is a superclass/subclass relationship, whereas in some KR schemes an
additional class/instance relationship can be represented directly in a class
hierarchy. An instance may itself be another class, allowing multiple-level
classification schemes.

4.7.2 |dentification

Identification is the abstraction process whereby classes and objects are made
uniquely identifiable by means of some identifier. For example, a class name uniquely
identifies a whole class within a schema. An additional mechanism is necessary for
telling distinct object instances apart by means of object identifiers. Moreover, it is
necessary to identify multiple manifestations in the database of the same real-world
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object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821"> in
a PERSON relation and another tuple <*301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-
tion that happen to represent the same real-world entity. There is no way to identify
the fact that these two database objects (tuples) represent the same real-world
entity unless we make a provision at design time for appropriate cross-referencing to
supply this identification. Hence, identification is needed at two levels:

B To distinguish among database objects and classes

B To identify database objects and to relate them to their real-world counterparts

In the EER model, identification of schema constructs is based on a system of
unique names for the constructs in a schema. For example, every class in an EER
schema—whether it is an entity type, a subclass, a category, or a relationship type—
must have a distinct name. The names of attributes of a particular class must also be
distinct. Rules for unambiguously identifying attribute name references in a spe-
cialization or generalization lattice or hierarchy are needed as well.

At the object level, the values of key attributes are used to distinguish among enti-
ties of a particular entity type. For weak entity types, entities are identified by a
combination of their own partial key values and the entities they are related to in
the owner entity type(s). Relationship instances are identified by some combination
of the entities that they relate to, depending on the cardinality ratio specified.

4.7.3 Specialization and Generalization

Specialization is the process of classifying a class of objects into more specialized
subclasses. Generalization is the inverse process of generalizing several classes into
a higher-level abstract class that includes the objects in all these classes. Specializa-
tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-
classes are used in the EER model to represent specialization and generalization.
We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF
relationship, or simply an IS-A relationship. This is the same as the IS-A relation-
ship discussed earlier in Section 4.5.3.

4.7.4 Aggregation and Association

Aggregation is an abstraction concept for building composite objects from their
component objects. There are three cases where this concept can be related to the
EER model. The first case is the situation in which we aggregate attribute values of
an object to form the whole object. The second case is when we represent an aggre-
gation relationship as an ordinary relationship. The third case, which the EER
model does not provide for explicitly, involves the possibility of combining objects
that are related by a particular relationship instance into a higher-level aggregate
object. This is sometimes useful when the higher-level aggregate object is itself to be
related to another object. We call the relationship between the primitive objects and
their aggregate object IS-A-PART-OF; the inverse is called IS-A-COMPONENT-OF.
UML provides for all three types of aggregation.
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The abstraction of association is used to associate objects from several independent
classes. Hence, it is somewhat similar to the second use of aggregation. It is repre-
sented in the EER model by relationship types, and in UML by associations. This
abstract relationship is called IS-ASSOCIATED-WITH.

In order to understand the different uses of aggregation better, consider the ER
schema shown in Figure 4.11(a), which stores information about interviews by
job applicants to various companies. The class COMPANY is an aggregation of
the attributes (or component objects) Cname (company name) and Caddress
(company address), whereas JOB_APPLICANT is an aggregate of Ssn, Name,
Address, and Phone. The relationship attributes Contact_name and Contact_phone
represent the name and phone number of the person in the company who is
responsible for the interview. Suppose that some interviews result in job offers,
whereas others do not. We would like to treat INTERVIEW as a class to associate it
with JOB_OFFER. The schema shown in Figure 4.11(b) is incorrect because it
requires each interview relationship instance to have a job offer. The schema
shown in Figure 4.11(c) is not allowed because the ER model does not allow rela-
tionships among relationships.

One way to represent this situation is to create a higher-level aggregate class com-
posed of COMPANY, JOB_APPLICANT, and INTERVIEW and to relate this class to
JOB_OFFER, as shown in Figure 4.11(d). Although the EER model as described in
this book does not have this facility, some semantic data models do allow it and call
the resulting object a composite or molecular object. Other models treat entity
types and relationship types uniformly and hence permit relationships among rela-
tionships, as illustrated in Figure 4.11(c).

To represent this situation correctly in the ER model as described here, we need to
create a new weak entity type INTERVIEW, as shown in Figure 4.11(e), and relate it to
JOB_OFFER. Hence, we can always represent these situations correctly in the ER
model by creating additional entity types, although it may be conceptually more
desirable to allow direct representation of aggregation, as in Figure 4.11(d), or to
allow relationships among relationships, as in Figure 4.11(c).

The main structural distinction between aggregation and association is that when
an association instance is deleted, the participating objects may continue to exist.
However, if we support the notion of an aggregate object—for example, a CAR that
is made up of objects ENGINE, CHASSIS, and TIRES—then deleting the aggregate
CAR object amounts to deleting all its component objects.

4.7.5 Ontologies and the Semantic Web

In recent years, the amount of computerized data and information available on
the Web has spiraled out of control. Many different models and formats are used.
In addition to the database models that we present in this text, much information
is stored in the form of documents, which have considerably less structure than
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Aggregation. (a) The
relationship type INTERVIEW.
(b) Including JOB_OFFER in a
ternary relationship type
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RESULTS_IN relationship
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(not allowed in ER). (d) Using
aggregation and a composite
(molecular) object (generally
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by some modeling tools).

(e) Correct representation

in ER.
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database information does. One ongoing project that is attempting to allow
information exchange among computers on the Web is called the Semantic
Web, which attempts to create knowledge representation models that are quite
general in order to allow meaningful information exchange and search among
machines. The concept of ontology is considered to be the most promising basis
for achieving the goals of the Semantic Web and is closely related to knowledge
representation. In this section, we give a brief introduction to what ontology is
and how it can be used as a basis to automate information understanding, search,
and exchange.

The study of ontologies attempts to describe the concepts and relationships that are
possible in reality through some common vocabulary; therefore, it can be consid-
ered as a way to describe the knowledge of a certain community about reality.
Ontology originated in the fields of philosophy and metaphysics. One commonly
used definition of ontology is a specification of a conceptualization."®

In this definition, a conceptualization is the set of concepts and relationships that
are used to represent the part of reality or knowledge that is of interest to a com-
munity of users. Specification refers to the language and vocabulary terms that are
used to specify the conceptualization. The ontology includes both specification and
conceptualization. For example, the same conceptualization may be specified in two
different languages, giving two separate ontologies. Based on this general defini-
tion, there is no consensus on what an ontology is exactly. Some possible ways to
describe ontologies are as follows:

® A thesaurus (or even a dictionary or a glossary of terms) describes the rela-
tionships between words (vocabulary) that represent various concepts.

B A taxonomy describes how concepts of a particular area of knowledge
are related using structures similar to those used in a specialization or
generalization.

® A detailed database schema is considered by some to be an ontology that
describes the concepts (entities and attributes) and relationships of a mini-
world from reality.

® A logical theory uses concepts from mathematical logic to try to define con-
cepts and their interrelationships.

Usually the concepts used to describe ontologies are similar to the concepts we dis-
cuss in conceptual modeling, such as entities, attributes, relationships, specializa-
tions, and so on. The main difference between an ontology and, say, a database
schema, is that the schema is usually limited to describing a small subset of a mini-
world from reality in order to store and manage data. An ontology is usually con-
sidered to be more general in that it attempts to describe a part of reality or a
domain of interest (for example, medical terms, electronic-commerce applications,
sports, and so on) as completely as possible.

8This definition is given in Gruber (1995).



Review Questions

4.8 Summary

In this chapter we discussed extensions to the ER model that improve its repre-
sentational capabilities. We called the resulting model the enhanced ER or EER
model. We presented the concept of a subclass and its superclass and the related
mechanism of attribute/relationship inheritance. We saw how it is sometimes
necessary to create additional classes of entities, either because of additional spe-
cific attributes or because of specific relationship types. We discussed two main
processes for defining superclass/subclass hierarchies and lattices: specialization
and generalization.

Next, we showed how to display these new constructs in an EER diagram. We also
discussed the various types of constraints that may apply to specialization or gener-
alization. The two main constraints are total/partial and disjoint/overlapping. We
discussed the concept of a category or union type, which is a subset of the union of
two or more classes, and we gave formal definitions of all the concepts presented.

We introduced some of the notation and terminology of UML for representing
specialization and generalization. In Section 4.7, we briefly discussed the discipline
of knowledge representation and how it is related to semantic data modeling. We
also gave an overview and summary of the types of abstract data representation
concepts: classification and instantiation, identification, specialization and gener-
alization, and aggregation and association. We saw how EER and UML concepts
are related to each of these.

Review Questions
4.1. What is a subclass? When is a subclass needed in data modeling?

4.2. Define the following terms: superclass of a subclass, superclass/subclass rela-
tionship, IS-A relationship, specialization, generalization, category, specific
(local) attributes, and specific relationships.

4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-
ful?

4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-
ferences between the two.

4.5. Discuss user-defined and attribute-defined specializations, and identify the
differences between the two.

4.6. Discuss the two main types of constraints on specializations and generalizations.

4.7. What is the difference between a specialization hierarchy and a specializa-
tion lattice?

4.8. What is the difference between specialization and generalization? Why do
we not display this difference in schema diagrams?
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4.9.

4.10.

4.12.

4.13.

4.15.

How does a category differ from a regular shared subclass? What is a cate-
gory used for? Illustrate your answer with examples.

For each of the following UML terms (see Sections 3.8 and 4.6), discuss the
corresponding term in the EER model, if any: object, class, association, aggre-
gation, generalization, multiplicity, attributes, discriminator, link, link attri-
bute, reflexive association, and qualified association.

. Discuss the main differences between the notation for EER schema dia-

grams and UML class diagrams by comparing how common concepts are
represented in each.

List the various data abstraction concepts and the corresponding modeling
concepts in the EER model.

What aggregation feature is missing from the EER model? How can the EER
model be further enhanced to support it?

. What are the main similarities and differences between conceptual database

modeling techniques and knowledge representation techniques?

Discuss the similarities and differences between an ontology and a database
schema.

Exercises

4.16.

4.18.

Design an EER schema for a database application that you are interested in.
Specify all constraints that should hold on the database. Make sure that the
schema has at least five entity types, four relationship types, a weak entity
type, a superclass/subclass relationship, a category, and an n-ary (n > 2) rela-
tionship type.

. Consider the BANK ER schema in Figure 3.21, and suppose that it

is necessary to keep track of different types of ACCOUNTS
(SAVINGS_ACCTS, CHECKING_ACCTS, ... ) and LOANS (CAR_LOANS,
HOME_LOANS, ... ). Suppose that it is also desirable to keep track of
each ACCOUNT's TRANSACTIONS (deposits, withdrawals, checks, ... )
and each LOAN's PAYMENTS; both of these include the amount, date,
and time. Modify the BANK schema, using ER and EER concepts of
specialization and generalization. State any assumptions you make
about the additional requirements.

The following narrative describes a simplified version of the organization of
Olympic facilities planned for the summer Olympics. Draw an EER diagram
that shows the entity types, attributes, relationships, and specializations for
this application. State any assumptions you make. The Olympic facilities are
divided into sports complexes. Sports complexes are divided into one-sport
and multisport types. Multisport complexes have areas of the complex desig-
nated for each sport with a location indicator (e.g., center, NE corner, and so



4.19.

on). A complex has a location, chief organizing individual, total occupied
area, and so on. Each complex holds a series of events (e.g., the track sta-
dium may hold many different races). For each event there is a planned date,
duration, number of participants, number of officials, and so on. A roster of
all officials will be maintained together with the list of events each official
will be involved in. Different equipment is needed for the events (e.g., goal
posts, poles, parallel bars) as well as for maintenance. The two types of facil-
ities (one-sport and multisport) will have different types of information. For
each type, the number of facilities needed is kept, together with an approxi-
mate budget.

Identify all the important concepts represented in the library database case
study described below. In particular, identify the abstractions of classifica-
tion (entity types and relationship types), aggregation, identification, and
specialization/generalization. Specify (min, max) cardinality constraints
whenever possible. List details that will affect the eventual design but that
have no bearing on the conceptual design. List the semantic constraints sep-
arately. Draw an EER diagram of the library database.

Case Study: The Georgia Tech Library (GTL) has approximately 16,000
members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies per
book). About 10% of the volumes are out on loan at any one time. The librar-
ians ensure that the books that members want to borrow are available when
the members want to borrow them. Also, the librarians must know how
many copies of each book are in the library or out on loan at any given time.
A catalog of books is available online that lists books by author, title, and
subject area. For each title in the library, a book description is kept in the
catalog; the description ranges from one sentence to several pages. The refer-
ence librarians want to be able to access this description when members
request information about a book. Library staff includes chief librarian,
departmental associate librarians, reference librarians, check-out staff, and
library assistants.

Books can be checked out for 21 days. Members are allowed to have only
five books out at a time. Members usually return books within three to four
weeks. Most members know that they have one week of grace before a
notice is sent to them, so they try to return books before the grace period
ends. About 5% of the members have to be sent reminders to return books.
Most overdue books are returned within a month of the due date. Approxi-
mately 5% of the overdue books are either kept or never returned. The most
active members of the library are defined as those who borrow books at
least ten times during the year. The top 1% of membership does 15% of the
borrowing, and the top 10% of the membership does 40% of the borrowing.
About 20% of the members are totally inactive in that they are members
who never borrow.

To become a member of the library, applicants fill out a form including their
SSN, campus and home mailing addresses, and phone numbers. The librari-
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4.20.

ans issue a numbered, machine-readable card with the member’s photo on it.
This card is good for four years. A month before a card expires, a notice is
sent to a member for renewal. Professors at the institute are considered auto-
matic members. When a new faculty member joins the institute, his or her
information is pulled from the employee records and a library card is mailed
to his or her campus address. Professors are allowed to check out books for
three-month intervals and have a two-week grace period. Renewal notices to
professors are sent to their campus address.

The library does not lend some books, such as reference books, rare books,
and maps. The librarians must differentiate between books that can be lent
and those that cannot be lent. In addition, the librarians have a list of some
books they are interested in acquiring but cannot obtain, such as rare or out-
of-print books and books that were lost or destroyed but have not been
replaced. The librarians must have a system that keeps track of books that
cannot be lent as well as books that they are interested in acquiring. Some
books may have the same title; therefore, the title cannot be used as a means
of identification. Every book is identified by its International Standard Book
Number (ISBN), a unique international code assigned to all books. Two
books with the same title can have different ISBNs if they are in different
languages or have different bindings (hardcover or softcover). Editions of
the same book have different ISBN.

The proposed database system must be designed to keep track of the mem-
bers, the books, the catalog, and the borrowing activity.

Design a database to keep track of information for an art museum. Assume
that the following requirements were collected:

® The museum has a collection of ART_OBJECTS. Each ART_OBJECT has a
unique Id_no, an Artist (if known), a Year (when it was created, if known),
a Title, and a Description. The art objects are categorized in several ways, as
discussed below.

B ART_OBIJECTS are categorized based on their type. There are three main
types—PAINTING, SCULPTURE, and STATUE—plus another type called
OTHER to accommodate objects that do not fall into one of the three main
types.

B A PAINTING has a Paint_type (oil, watercolor, etc.), material on which
it is Drawn_on (paper, canvas, wood, etc.), and Style (modern,
abstract, etc.).

® A SCULPTURE or a statue has a Material from which it was created (wood,
stone, etc.), Height, Weight, and Style.

® Anart object in the OTHER category has a Type (print, photo, etc.) and Style.

B ART_OBIJECTs are categorized as either PERMANENT_COLLECTION
(objects that are owned by the museum) and BORROWED. Information

captured about objects in the PERMANENT_COLLECTION includes
Date_acquired, Status (on display, on loan, or stored), and Cost. Information
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captured about BORROWED objects includes the Collection from which it
was borrowed, Date_borrowed, and Date_returned.

® Information describing the country or culture of Origin (Italian, Egyptian,
American, Indian, and so forth) and Epoch (Renaissance, Modern,
Ancient, and so forth) is captured for each ART_OBJECT.

® The museum keeps track of ARTIST information, if known: Name,
DateBorn (if known), Date_died (if not living), Country_of_origin, Epoch,
Main_style, and Description. The Name is assumed to be unique.

u Different EXHIBITIONS occur, each having a Name, Start_date, and End_date.
EXHIBITIONS are related to all the art objects that were on display during
the exhibition.

B Information is kept on other COLLECTIONS with which the museum
interacts; this information includes Name (unique), Type (museum, per-
sonal, etc.), Description, Address, Phone, and current Contact_person.

Draw an EER schema diagram for this application. Discuss any assumptions
you make, and then justify your EER design choices.

Figure 4.12 shows an example of an EER diagram for a small-private-airport
database; the database is used to keep track of airplanes, their owners, air-
port employees, and pilots. From the requirements for this database, the fol-
lowing information was collected: Each AIRPLANE has a registration number
[Reg#], is of a particular plane type [OF_TYPE], and is stored in a particular
hangar [STORED_IN]. Each PLANE_TYPE has a model number [Modell, a
capacity [Capacity], and a weight [Weight]. Each HANGAR has a number
[Number], a capacity [Capacity], and a location [Location]. The database also
keeps track of the OWNERSs of each plane [OWNS] and the EMPLOYEEs who
have maintained the plane [MAINTAIN]. Each relationship instance in OWNS
relates an AIRPLANE to an OWNER and includes the purchase date [Pdate].
Each relationship instance in MAINTAIN relates an EMPLOYEE to a service
record [SERVICE]. Each plane undergoes service many times; hence, it is
related by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE
record includes as attributes the date of maintenance [Date], the number of
hours spent on the work [Hours], and the type of work done [Work_code]. We
use a weak entity type [SERVICE] to represent airplane service, because the
airplane registration number is used to identify a service record. An OWNER
is either a person or a corporation. Hence, we use a union type (category)
[OWNER] that is a subset of the union of corporation [CORPORATION] and
person [PERSON] entity types. Both pilots [PILOT] and employees
[EMPLOYEE] are subclasses of PERSON. Each PILOT has specific attributes
license number [Lic_num] and restrictions [Restr]; each EMPLOYEE has spe-
cific attributes salary [Salary] and shift worked [Shift]. All PERSON entities in
the database have data kept on their Social Security number [Ssn], name
[Name], address [Address], and telephone number [Phone]. For CORPORATION
entities, the data kept includes name [Name], address [Address], and
telephone number [Phone]. The database also keeps track of the types of

Exercises
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EER schema for a SMALL_AIRPORT database.

4.22.

planes each pilot is authorized to fly [FLIES] and the types of planes each
employee can do maintenance work on [WORKS_ON]. Show how the
SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UML
notation. (Note: We have not discussed how to represent categories (union
types) in UML, so you do not have to map the categories in this and the fol-
lowing question.)

Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in
UML notation.



Exercises 141

4.23. Consider the entity sets and attributes shown in the following table. Place a
checkmark in one column in each row to indicate the relationship between
the far left and far right columns.

a. The left side has a relationship with the right side.
b. The right side is an attribute of the left side.

c. The left side is a specialization of the right side.
d. The left side is a generalization of the right side.
(a) Has a (b) Has an (©lIsa (dlIsa
Relationship Attribute Specialization  Generalization Entity Set
Entity Set with that is of of or Attribute
1. MOTHER PERSON
2. DAUGHTER MOTHER
3. STUDENT PERSON
4. STUDENT Student_id
5. SCHOOL STUDENT
6. SCHOOL CLASS_ROOM
7. ANIMAL HORSE
8. HORSE Breed
9. HORSE Age
10. EMPLOYEE SSN
11. FURNITURE CHAIR
12. CHAIR Weight
13. HUMAN WOMAN
14. SOLDIER PERSON
15. ENEMY_COMBATANT PERSON

4.24. Draw a UML diagram for storing a played game of chess in a database.
You may look at http://www.chessgames.com for an application similar to
what you are designing. State clearly any assumptions you make in your
UML diagram. A sample of assumptions you can make about the scope is
as follows:

1. The game of chess is played between two players.
2. The game is played on an 8 x 8 board like the one shown below:
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3. The players are assigned a color of black or white at the start of the game.

4. Each player starts with the following pieces (traditionally called
chessmen):

king

. queen

2 rooks

. 2 bishops

2 knights

8 pawns

-0 Qo0 o

5. Every piece has its own initial position.

6. Every piece has its own set of legal moves based on the state of the game.
You do not need to worry about which moves are or are not legal except
for the following issues:

a. A piece may move to an empty square or capture an opposing piece.

b. If a piece is captured, it is removed from the board.

c. If a pawn moves to the last row, it is “promoted” by converting it to
another piece (queen, rook, bishop, or knight).

Note: Some of these functions may be spread over multiple classes.
4.25. Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus

on persistent storage aspects of the system. For example, the system would
need to retrieve all the moves of every game played in sequential order.

4.26. Which of the following EER diagrams is/are incorrect and why? State clearly
any assumptions you make.
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4.27. Consider the following EER diagram that describes the computer systems at
a company. Provide your own attributes and key for each entity type. Supply
max cardinality constraints justifying your choice. Write a complete narra-
tive description of what this EER diagram represents.

INSTALLED

SOLD_WITH ‘ SOFTWARE

)

| INSTALLED_OS
0 OPERATING_
SYSTEM
LAPTOP DESKTOP
OPTIONS
COMPONENT
MEM_OPTIONS
i MEMORY VIDEO_CARD

SOUND_CARD

SUPPORTS

ACCESSORY

KEYBOARD
MONITOR

Laboratory Exercises

4.28. Consider a GRADE_BOOK database in which instructors within an academic
department record points earned by individual students in their classes. The
data requirements are summarized as follows:

m Each student is identified by a unique identifier, first and last name, and
an e-mail address.

® Each instructor teaches certain courses each term. Each course is identified
by a course number, a section number, and the term in which it is taught. For
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4.29.

each course he or she teaches, the instructor specifies the minimum number
of points required in order to earn letter grades A, B, C, D, and F. For exam-
ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.

Students are enrolled in each course taught by the instructor.

Each course has a number of grading components (such as midterm
exam, final exam, project, and so forth). Each grading component has a
maximum number of points (such as 100 or 50) and a weight (such as
20% or 10%). The weights of all the grading components of a course usu-
ally total 100.

Finally, the instructor records the points earned by each student in each of
the grading components in each of the courses. For example, student 1234
earns 84 points for the midterm exam grading component of the section 2
course CSc2310 in the fall term of 2009. The midterm exam grading com-
ponent may have been defined to have a maximum of 100 points and a
weight of 20% of the course grade.

Design an enhanced entity-relationship diagram for the grade book data-
base and build the design using a data modeling tool such as ERwin or
Rational Rose.

Consider an ONLINE_AUCTION database system in which members (buyers
and sellers) participate in the sale of items. The data requirements for this
system are summarized as follows:

The online site has members, each of whom is identified by a unique
member number and is described by an e-mail address, name, password,
home address, and phone number.

A member may be a buyer or a seller. A buyer has a shipping address
recorded in the database. A seller has a bank account number and routing
number recorded in the database.

Items are placed by a seller for sale and are identified by a unique item
number assigned by the system. Items are also described by an item title,
a description, starting bid price, bidding increment, the start date of the
auction, and the end date of the auction.

Items are also categorized based on a fixed classification hierarchy (for
example, a modem may be classified as COMPUTER > HARDWARE >
MODEM).

Buyers make bids for items they are interested in. Bid price and time of
bid are recorded. The bidder at the end of the auction with the highest bid
price is declared the winner, and a transaction between buyer and seller
may then proceed.

The buyer and seller may record feedback regarding their completed
transactions. Feedback contains a rating of the other party participating
in the transaction (1-10) and a comment.
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4.31.

4.32.

4.33.

Laboratory Exercises

Design an enhanced entity-relationship diagram for the ONLINE_AUCTION
database and build the design using a data modeling tool such as ERwin or
Rational Rose.

Consider a database system for a baseball organization such as the major
leagues. The data requirements are summarized as follows:

® The personnel involved in the league include players, coaches, managers,
and umpires. Each is identified by a unique personnel id. They are also
described by their first and last names along with the date and place of
birth.

m Players are further described by other attributes such as their batting ori-
entation (left, right, or switch) and have a lifetime batting average (BA).

® Within the players group is a subset of players called pitchers. Pitchers
have a lifetime ERA (earned run average) associated with them.

B Teams are uniquely identified by their names. Teams are also described by
the city in which they are located and the division and league in which
they play (such as Central division of the American League).

B Teams have one manager, a number of coaches, and a number of players.

B Games are played between two teams, with one designated as the home
team and the other the visiting team on a particular date. The score (runs,
hits, and errors) is recorded for each team. The team with the most runs is
declared the winner of the game.

® With each finished game, a winning pitcher and a losing pitcher are
recorded. In case there is a save awarded, the save pitcher is also recorded.

m With each finished game, the number of hits (singles, doubles, triples, and
home runs) obtained by each player is also recorded.

Design an enhanced entity-relationship diagram for the BASEBALL data-
base and enter the design using a data modeling tool such as ERwin or
Rational Rose.

Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9.
Enter this design using a data modeling tool such as ERwin or Rational Rose.
Make a list of the differences in notation between the diagram in the text
and the corresponding equivalent diagrammatic notation you end up using
with the tool.

Consider the EER diagram for the small AIRPORT database shown in Fig-
ure 4.12. Build this design using a data modeling tool such as ERwin or Rational
Rose. Be careful how you model the category OWNER in this diagram. (Hint:
Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER as
two distinct relationship types.)

Consider the UNIVERSITY database described in Exercise 3.16. You already
developed an ER schema for this database using a data modeling tool such as
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ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-
sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES
and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS.
Include appropriate attributes for these new entity types. Then establish
relationships indicating that junior instructors teach undergraduate courses
whereas senior instructors teach graduate courses.
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chapter 'D

The Relational Data Model and
Relational Database Constraints

This chapter opens Part 3 of the book, which covers
relational databases. The relational data model was
first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd,
1970), and it attracted immediate attention due to its simplicity and mathematical
foundation. The model uses the concept of a mathematical relation—which looks
somewhat like a table of values—as its basic building block, and has its theoretical
basis in set theory and first-order predicate logic. In this chapter we discuss the
basic characteristics of the model and its constraints.

The first commercial implementations of the relational model became available in
the early 1980s, such as the SQL/DS system on the MVS operating system by IBM
and the Oracle DBMS. Since then, the model has been implemented in a large num-
ber of commercial systems, as well as a number of open source systems. Current
popular commercial relational DBMSs (RDBMSs) include DB2 (from IBM), Oracle
(from Oracle), Sybase DBMS (now from SAP), and SQLServer and Microsoft
Access (from Microsoft). In addition, several open source systems, such as MySQL
and PostgreSQL, are available.

Because of the importance of the relational model, all of Part 2 is devoted to this
model and some of the languages associated with it. In Chapters 6 and 7, we describe
some aspects of SQL, which is a comprehensive model and language that is the
standard for commercial relational DBMSs. (Additional aspects of SQL will be cov-
ered in other chapters.) Chapter 8 covers the operations of the relational algebra and
introduces the relational calculus—these are two formal languages associated with
the relational model. The relational calculus is considered to be the basis for the
SQL language, and the relational algebra is used in the internals of many database
implementations for query processing and optimization (see Part 8 of the book).
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Other features of the relational model are presented in subsequent parts of the
book. Chapter 9 relates the relational model data structures to the constructs of the
ER and EER models (presented in Chapters 3 and 4), and presents algorithms for
designing a relational database schema by mapping a conceptual schema in the ER
or EER model into a relational representation. These mappings are incorporated
into many database design and CASE! tools. Chapters 10 and 11 in Part 4 discuss
the programming techniques used to access database systems and the notion of
connecting to relational databases via ODBC and JDBC standard protocols. We
also introduce the topic of Web database programming in Chapter 11. Chapters 14
and 15 in Part 6 present another aspect of the relational model, namely the formal
constraints of functional and multivalued dependencies; these dependencies are
used to develop a relational database design theory based on the concept known as
normalization.

In this chapter, we concentrate on describing the basic principles of the relational
model of data. We begin by defining the modeling concepts and notation of the
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational
constraints that are considered an important part of the relational model and are
automatically enforced in most relational DBMSs. Section 5.3 defines the update
operations of the relational model, discusses how violations of integrity constraints
are handled, and introduces the concept of a transaction. Section 5.4 summarizes
the chapter.

This chapter and Chapter 8 focus on the formal foundations of the relational model,
whereas Chapters 6 and 7 focus on the SQL practical relational model, which is the
basis of most commercial and open source relational DBMSs. Many concepts are
common between the formal and practical models, but a few differences exist that
we shall point out.

5.1 Relational Model Concepts

The relational model represents the database as a collection of relations. Informally,
each relation resembles a table of values or, to some extent, a flat file of records. It is
called a flat file because each record has a simple linear or flat structure. For exam-
ple, the database of files that was shown in Figure 1.2 is similar to the basic rela-
tional model representation. However, there are important differences between
relations and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of related data values. A row represents a fact that typically corresponds
to a real-world entity or relationship. The table name and column names are used
to help to interpret the meaning of the values in each row. For example, the
first table of Figure 1.2 is called STUDENT because each row represents facts
about a particular student entity. The column names—Name, Student_number,

CASE stands for computer-aided software engineering.
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Class, and Major—specify how to interpret the data values in each row, based on the
column each value is in. All values in a column are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column
header is called an attribute, and the table is called a relation. The data type
describing the types of values that can appear in each column is represented by a
domain of possible values. We now define these terms—domain, tuple, attribute,
and relation—formally.

5.1.1 Domains, Attributes, Tuples, and Relations

A domain D is a set of atomic values. By atomic we mean that each value in the
domain is indivisible as far as the formal relational model is concerned. A common
method of specifying a domain is to specify a data type from which the data values
forming the domain are drawn. It is also useful to specify a name for the domain, to
help in interpreting its values. Some examples of domains follow:

B Usa_phone_numbers. The set of ten-digit phone numbers valid in the United
States.

B Local_phone_numbers. The set of seven-digit phone numbers valid within a
particular area code in the United States. The use of local phone numbers is
quickly becoming obsolete, being replaced by standard ten-digit numbers.

B Social_security_numbers. The set of valid nine-digit Social Security numbers.
(This is a unique identifier assigned to each person in the United States for
employment, tax, and benefits purposes.)

E Names: The set of character strings that represent names of persons.

B Grade_point_averages. Possible values of computed grade point averages;
each must be a real (floating-point) number between 0 and 4.

B Employee_ages. Possible ages of employees in a company; each must be an
integer value between 15 and 80.

B Academic_department_names. The set of academic department names in a
university, such as Computer Science, Economics, and Physics.

B Academic_department_codes. The set of academic department codes, such as
‘CS’, ‘ECON’, and ‘PHYS’.

The preceding are called logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain
Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-dddd,
where each d is a numeric (decimal) digit and the first three digits form a valid
telephone area code. The data type for Employee_ages is an integer number between
15 and 80. For Academic_department_names, the data type is the set of all character
strings that represent valid department names. A domain is thus given a name, data
type, and format. Additional information for interpreting the values of a domain
can also be given; for example, a numeric domain such as Person_weights should
have the units of measurement, such as pounds or kilograms.
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A relation schema? R, denoted by R(A}, A,, ..., A,), is made up of a relation name
R and a list of attributes, A;, Ay, ... , A,. Each attribute A, is the name of a role
played by some domain D in the relation schema R. D is called the domain of A;
and is denoted by dom(A;). A relation schema is used to describe a relation; R is
called the name of this relation. The degree (or arity) of a relation is the number of
attributes # of its relation schema.

A relation of degree seven, which stores information about university students,
would contain seven attributes describing each student as follows:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the preceding definition, we showed assignment of generic types such
as string or integer to the attributes. More precisely, we can specify the following
previously defined domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social_security_numbers; dom(HomePhone) =
USA_phone_numbers®, dom(Office_phone) = USA_phone_numbers, and dom(Gpa) =
Grade_point_averages. It is also possible to refer to attributes of a relation schema by
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)*  of the relation schema R(A;, Ay, ..., A,), also denoted
by r(R), is a set of n-tuples r = {t,, t5, ... , t,,,}. Each n-tuple t is an ordered list of n
values t =<vy, vy, ... , ¥,,>, where each value v;, 1 <i<n, is an element of dom (A4;) or is
a special NULL value. (NULL values are discussed further below and in Section 5.1.2.)
The ith value in tuple ¢, which corresponds to the attribute A;, is referred to as t[A;] or
t.A; (or t[i] if we use the positional notation). The terms relation intension for the
schema R and relation extension for a relation state r(R) are also commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the
STUDENT schema just specified. Each tuple in the relation represents a particular
student entity (or object). We display the relation as a table, where each tuple is
shown as a row and each attribute corresponds to a column header indicating a role
or interpretation of the values in that column. NULL values represent attributes
whose values are unknown or do not exist for some individual STUDENT tuple.

2A relation schema is sometimes called a relation scheme.

SWith the large increase in phone numbers caused by the proliferation of mobile phones, most metropol-
itan areas in the United States now have multiple area codes, so seven-digit local dialing has been
discontinued in most areas. We changed this domain to Usa_phone_numbers instead of Local_phone_
numbers, which would be a more general choice. This illustrates how database requirements can change
over time.

“This has also been called a relation instance. We will not use this term because instance is also used
to refer to a single tuple or row.
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Relatlon Name Attrlbutes
Name Home phone Address Offlce _phone |Age | Gpa
Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane | NULL 19 [3.21
/( Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 | 2.89
Tuples i Dick Davidson | 422-11-2320 | NULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
\ Rohan Panchal |489-22-1100 | (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 | 3.93
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 | 3.256

Figure 5.1
The attributes and tuples of a relation STUDENT.

The earlier definition of a relation can be restated more formally using set theory
concepts as follows. A relation (or relation state) 7(R) is a mathematical relation of
degree n on the domains dom(4;), dom(A,), ..., dom(A,), which is a subset of the
Cartesian product (denoted by x) of the domains that define R:

r(R)  (dom(A;) X dom(A,) X. .. X (dom(A,))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a
domain D by |D| (assuming that all domains are finite), the total number of tuples
in the Cartesian product is

|dom(A})| X |dom(A,)| % . ..x |dom(A,)|

This product of cardinalities of all domains represents the total number of possible
instances or tuples that can ever exist in any relation state r(R). Of all these possible
combinations, a relation state at a given time—the current relation state—reflects
only the valid tuples that represent a particular state of the real world. In general, as
the state of the real world changes, so does the relation state, by being transformed
into another relation state. However, the schema R is relatively static and changes
very infrequently—for example, as a result of adding an attribute to represent new
information that was not originally stored in the relation.

It is possible for several attributes to have the same domain. The attribute names indi-
cate different roles, or interpretations, for the domain. For example, in the STUDENT
relation, the same domain USA_phone_numbers plays the role of Home_phone, referring
to the home phone of a student, and the role of Office_phone, referring to the office
phone of the student. A third possible attribute (not shown) with the same domain
could be Mobile_phone.

5.1.2 Characteristics of Relations

The earlier definition of relations implies certain characteristics that make a rela-
tion different from a file or a table. We now discuss some of these characteristics.



154 Chapter 5 The Relational Data Model and Relational Database Constraints

Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Math-
ematically, elements of a set have no order among them; hence, tuples in a relation
do not have any particular order. In other words, a relation is not sensitive to the
ordering of tuples. However, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates
first, second, ith, and last records in the file. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.

Tuple ordering is not part of a relation definition because a relation attempts to rep-
resent facts at a logical or abstract level. Many tuple orders can be specified on the
same relation. For example, tuples in the STUDENT relation in Figure 5.1 could be
ordered by values of Name, Ssn, Age, or some other attribute. The definition of a rela-
tion does not specify any order: There is no preference for one ordering over another.
Hence, the relation displayed in Figure 5.2 is considered identical to the one shown in
Figure 5.1. When a relation is implemented as a file or displayed as a table, a particular
ordering may be specified on the records of the file or the rows of the table.

Ordering of Values within a Tuple and an Alternative Definition of a Relation.
According to the preceding definition of a relation, an n-tuple is an ordered list of n
values, so the ordering of values in a tuple—and hence of attributes in a relation
schema—is important. However, at a more abstract level, the order of attributes
and their values is not that important as long as the correspondence between attri-
butes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values
in a tuple unnecessary. In this definition, a relation schema R={A, A5, ..., A, } isa
set of attributes (instead of an ordered list of attributes), and a relation state r(R) is
a finite set of mappings r = {t1, f,, ... , t,,,}, where each tuple t; is a mapping from R
to D, and D is the union (denoted by L) of the attribute domains; that is, D =
dom(A;) U dom(A,) U ... Udom(A,). In this definition, t[A;] must be in dom(A;)
for 1 < i< n for each mapping t in r. Each mapping ¢; is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a
set of (<attribute>, <value>) pairs, where each pair gives the value of the mapping
from an attribute A; to a value v; from dom(4;). The ordering of attributes is not
important, because the attribute name appears with its value. By this definition, the

Figure 5.2
The relation STUDENT from Figure 5.1 with a different order of tuples.
STUDENT
Name Ssn Home_phone Address Office_phone | Age | Gpa
Dick Davidson | 422-11-2320 | NULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 | 3.25
Rohan Panchal |489-22-1100 | (817)376-9821 | 265 Lark Lane (817)749-6492 | 28 | 3.93
Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 | 2.89
Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane | NULL 19 | 3.21
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t =< (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),

(Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t=< (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),
(Office_phone, (817)749-1253),(Gpa, 3.563),(Home_phone, NULL)>

Figure 5.3
Two identical tuples when the order of attributes and values is not part of relation definition.
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two tuples shown in Figure 5.3 are identical. This makes sense at an abstract level,
since there really is no reason to prefer having one attribute value appear before
another in a tuple. When the attribute name and value are included together in a
tuple, it is known as self-describing data, because the description of each value
(attribute name) is included in the tuple.

We will mostly use the first definition of relation, where the attributes are ordered
in the relation schema and the values within tuples are similarly ordered, because it
simplifies much of the notation. However, the alternative definition given here is
more general.”

Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that
is, it is not divisible into components within the framework of the basic relational
model. Hence, composite and multivalued attributes (see Chapter 3) are not
allowed. This model is sometimes called the flat relational model. Much of the
theory behind the relational model was developed with this assumption in mind,
which is called the first normal form assumption.® Hence, multivalued attributes
must be represented by separate relations, and composite attributes are represented
only by their simple component attributes in the basic relational model.”

An important concept is that of NULL values, which are used to represent the values of
attributes that may be unknown or may not apply to a tuple. A special value, called
NULL, is used in these cases. For example, in Figure 5.1, some STUDENT tuples have
NULL for their office phones because they do not have an office (that is, office phone
does not apply to these students). Another student has a NULL for home phone, presum-
ably because either he does not have a home phone or he has one but we do not know it
(value is unknown). In general, we can have several meanings for NULL values, such as
value unknown, value exists but is not available, or attribute does not apply to this tuple
(also known as value undefined). An example of the last type of NULL will occur if we
add an attribute Visa_status to the STUDENT relation that applies only to tuples repre-
senting foreign students. It is possible to devise different codes for different meanings of

SWe will use the alternative definition of relation when we discuss query processing and optimization in
Chapter 18.

5We discuss this assumption in more detail in Chapter 14.

"Extensions of the relational model remove these restrictions. For example, object-relational systems
(Chapter 12) allow complex-structured attributes, as do the non-first normal form or nested relational
models.
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NULL values. Incorporating different types of NULL values into relational model opera-
tions has proven difficult and is outside the scope of our presentation.

The exact meaning of a NULL value governs how it fares during arithmetic aggrega-
tions or comparisons with other values. For example, a comparison of two NULL
values leads to ambiguities—if both Customer A and B have NULL addresses, it does
not mean they have the same address. During database design, it is best to avoid
NULL values as much as possible. We will discuss this further in Chapters 7 and 8 in
the context of operations and queries, and in Chapter 14 in the context of database
design and normalization.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted
as a declaration or a type of assertion. For example, the schema of the STUDENT
relation of Figure 5.1 asserts that, in general, a student entity has a Name, Ssn,
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can
then be interpreted as a fact or a particular instance of the assertion. For example,
the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other rela-
tions may represent facts about relationships. For example, a relation schema
MAJORS (Student_ssn, Department_code) asserts that students major in academic
disciplines. A tuple in this relation relates a student to his or her major discipline.
Hence, the relational model represents facts about both entities and relationships
uniformly as relations. This sometimes compromises understandability because
one has to guess whether a relation represents an entity type or a relationship type.
We introduced the entity-relationship (ER) model in detail in Chapter 3, where the
entity and relationship concepts were described in detail. The mapping procedures
in Chapter 9 show how different constructs of the ER/EER conceptual data models
(see Part 2) get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate. For example,
the predicate STUDENT (Name, Ssn, ...) is true for the five tuples in relation STUDENT
of Figure 5.1. These tuples represent five different propositions or facts in the
real world. This interpretation is quite useful in the context of logical programming
languages, such as Prolog, because it allows the relational model to be used within
these languages (see Section 26.5). An assumption called the closed world assumption
states that the only true facts in the universe are those present within the extension
(state) of the relation(s). Any other combination of values makes the predicate false.
This interpretation is useful when we consider queries on relations based on
relational calculus in Section 8.6.

5.1.3 Relational Model Notation

We will use the following notation in our presentation:

B A relation schema R of degree n is denoted by R(A1, A,, ..., A,).
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The uppercase letters Q, R, S denote relation names.
The lowercase letters g, 7, s denote relation states.

The letters t, u, v denote tuples.

In general, the name of a relation schema such as STUDENT also indicates
the current set of tuples in that relation—the current relation state—whereas
STUDENT(Name, Ssn, ...) refers only to the relation schema.

B An attribute A can be qualified with the relation name R to which it belongs
by using the dot notation R.A—for example, STUDENT.Name or
STUDENT.Age. This is because the same name may be used for two attri-
butes in different relations. However, all attribute names in a particular
relation must be distinct.

B An n-tuple t in a relation r(R) is denoted by t = <vy, v,, ..., v,>, where v; is
the value corresponding to attribute A;. The following notation refers to
component values of tuples:

O Both t[A;] and t.A; (and sometimes t[i]) refer to the value v; in t for attri-

bute A;.
O Both t[A, A, ..., A and t.(A,, A,, ..., A,), where A, A,, ..., A, is a list
of attributes from R, refer to the subtuple of values <v,, v,,, ... , v,> from ¢

corresponding to the attributes specified in the list.

As an example, consider the tuple t = <’Barbara Benson’, ‘533-69-1238’,
‘(817)839-8461, 7384 Fontana Lane’, NULL, 19, 3.25> from the STUDENT relation in Fig-
ure 5.1; we have {[Name] = <‘Barbara Benson’>, and t[Ssn, Gpa, Age] = <‘533-69-1238’,
3.25,19>.

5.2 Relational Model Constraints
and Relational Database Schemas

So far, we have discussed the characteristics of single relations. In a relational data-
base, there will typically be many relations, and the tuples in those relations are
usually related in various ways. The state of the whole database will correspond to
the states of all its relations at a particular point in time. There are generally many
restrictions or constraints on the actual values in a database state. These constraints
are derived from the rules in the miniworld that the database represents, as we dis-
cussed in Section 1.6.8.

In this section, we discuss the various restrictions on data that can be specified on a
relational database in the form of constraints. Constraints on databases can gener-
ally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent
model-based constraints or implicit constraints.

2. Constraints that can be directly expressed in the schemas of the data model, typi-
cally by specifying them in the DDL (data definition language, see Section 2.3.1).
We call these schema-based constraints or explicit constraints.
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3. Constraints that cannot be directly expressed in the schemas of the data
model, and hence must be expressed and enforced by the application pro-
grams or in some other way. We call these application-based or semantic
constraints or business rules.

The characteristics of relations that we discussed in Section 5.1.2 are the inherent
constraints of the relational model and belong to the first category. For example, the
constraint that a relation cannot have duplicate tuples is an inherent constraint. The
constraints we discuss in this section are of the second category, namely, constraints
that can be expressed in the schema of the relational model via the DDL. Constraints
in the third category are more general, relate to the meaning as well as behavior of
attributes, and are difficult to express and enforce within the data model, so they are
usually checked within the application programs that perform database updates. In
some cases, these constraints can be specified as assertions in SQL (see Chapter 7).

Another important category of constraints is data dependencies, which include
functional dependencies and multivalued dependencies. They are used mainly for
testing the “goodness” of the design of a relational database and are utilized in a
process called normalization, which is discussed in Chapters 14 and 15.

The schema-based constraints include domain constraints, key constraints, con-
straints on NULLs, entity integrity constraints, and referential integrity constraints.

5.2.1 Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute A must
be an atomic value from the domain dom(A). We have already discussed the ways in
which domains can be specified in Section 5.1.1. The data types associated with
domains typically include standard numeric data types for integers (such as short
integer, integer, and long integer) and real numbers (float and double-precision float).
Characters, Booleans, fixed-length strings, and variable-length strings are also avail-
able, as are date, time, timestamp, and other special data types. Domains can also be
described by a subrange of values from a data type or as an enumerated data type in
which all possible values are explicitly listed. Rather than describe these in detail here,
we discuss the data types offered by the SQL relational standard in Section 6.1.

5.2.2 Key Constraints and Constraints on NULL Values

In the formal relational model, a relation is defined as a set of tuples. By definition,
all elements of a set are distinct; hence, all tuples in a relation must also be distinct.
This means that no two tuples can have the same combination of values for all their
attributes. Usually, there are other subsets of attributes of a relation schema R with
the property that no two tuples in any relation state r of R should have the same
combination of values for these attributes. Suppose that we denote one such subset
of attributes by SK; then for any two distinct tuples t; and ¢, in a relation state r of R,
we have the constraint that:

t1[SK] # t,[SK]
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Any such set of attributes SK is called a superkey of the relation schema R. A super-
key SK specifies a uniqueness constraint that no two distinct tuples in any state r of
R can have the same value for SK. Every relation has at least one default superkey—
the set of all its attributes. A superkey can have redundant attributes, however, so a
more useful concept is that of a key, which has no redundancy. A key k of a relation
schema R is a superkey of R with the additional property that removing any attri-
bute A from K leaves a set of attributes K’ that is not a superkey of R any more.
Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical values
for (all) the attributes in the key. This uniqueness property also applies to a
superkey.

2. It is a minimal superkey—that is, a superkey from which we cannot remove
any attributes and still have the uniqueness constraint hold. This minimality
property is required for a key but is optional for a superkey.

Hence, a key is a superkey but not vice versa. A superkey may be a key (if it is mini-
mal) or may not be a key (if it is not minimal). Consider the STUDENT relation of
Figure 5.1. The attribute set {Ssn} is a key of STUDENT because no two student
tuples can have the same value for Ssn.® Any set of attributes that includes Ssn—for
example, {Ssn, Name, Age}—is a superkey. However, the superkey {Ssn, Name, Age}
is not a key of STUDENT because removing Name or Age or both from the set still
leaves us with a superkey. In general, any superkey formed from a single attribute is
also a key. A key with multiple attributes must require all its attributes together to
have the uniqueness property.

The value of a key attribute can be used to identify uniquely each tuple in the rela-
tion. For example, the Ssn value 305-61-2435 identifies uniquely the tuple corre-
sponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes
constituting a key is a property of the relation schema; it is a constraint that should
hold on every valid relation state of the schema. A key is determined from the mean-
ing of the attributes, and the property is time-invariant: It must continue to hold
when we insert new tuples in the relation. For example, we cannot and should not
designate the Name attribute of the STUDENT relation in Figure 5.1 as a key because
it is possible that two students with identical names will exist at some point in a
valid state.”

In general, a relation schema may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two
candidate keys: License_number and Engine_serial_number. It is common to designate
one of the candidate keys as the primary key of the relation. This is the candidate
key whose values are used to identify tuples in the relation. We use the convention
that the attributes that form the primary key of a relation schema are underlined, as
shown in Figure 5.4. Notice that when a relation schema has several candidate keys,

8Note that Ssn is also a superkey.

®Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—must
be used to distinguish between persons with identical names.
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Figure 5.4

The CAR relation, with
two candidate keys:
License_number and

Engine_serial_number.
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CAR
License_number | Engine_serial_number Make Model | Year
Texas ABC-739 A69352 Ford Mustang | 02
Florida TVP-347 B43696 Oldsmobile | Cutlass 05
New York MPO-22 X83554 Oldsmobile | Delta 01
California 432-TFY C43742 Mercedes 190-D 99
California RSK-629 Y82935 Toyota Camry 04
Texas RSK-629 U028365 Jaguar XJS 04

the choice of one to become the primary key is somewhat arbitrary; however, it is
usually better to choose a primary key with a single attribute or a small number
of attributes. The other candidate keys are designated as unique keys and are
not underlined.

Another constraint on attributes specifies whether NULL values are or are not per-
mitted. For example, if every STUDENT tuple must have a valid, non-NULL value for
the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

5.2.3 Relational Databases and Relational
Database Schemas

The definitions and constraints we have discussed so far apply to single relations
and their attributes. A relational database usually contains many relations, with
tuples in relations that are related in various ways. In this section, we define a rela-
tional database and a relational database schema.

A relational database schema S is a set of relation schemas S = {R, R,, ..., R,;} and
a set of integrity constraints IC. A relational database state!’ DB of S is a set of
relation states DB = {r, 75, ..., 1,,,} such that each r; is a state of R; and such that the
r; relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows a
relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,
DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}. In each relation schema,
the underlined attribute represents the primary key. Figure 5.6 shows a relational
database state corresponding to the COMPANY schema. We will use this schema
and database state in this chapter and in Chapters 4 through 6 for developing
sample queries in different relational languages. (The data shown here is
expanded and available for loading as a populated database from the Compan-
ion Website for the text, and can be used for the hands-on project exercises at
the end of the chapters.)

When we refer to a relational database, we implicitly include both its schema and its
current state. A database state that does not obey all the integrity constraints is

10 relational database state is sometimes called a relational database snapshot or instance. However,
as we mentioned earlier, we will not use the term instance since it also applies to single tuples.
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EMPLOYEE
| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno ‘

DEPARTMENT
| Dname | Dnumber | Mgr_ssn| Mgr_start_date|

DEPT_LOCATIONS

| Dnumber | Dlocation |

PROJECT
| Pname | Pnumber | Plocation | Dnum
WORKS_ON
| Essn | Pno | Hours |
Figure 5.5
DEPENDENT Schema diagram for the
COMPANY relational

| Essn | Dependent_name | Sex | Bdate | Relationship database schema

called not valid, and a state that satisfies all the constraints in the defined set of
integrity constraints IC is called a valid state.

In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS
stands for the same real-world concept—the number given to a department. That
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts may have
the same name in different relations. For example, we could have used the attribute
name Name for both Pname of PROJECT and Dname of DEPARTMENT; in this case, we
would have two attributes that share the same name but represent different real-
world concepts—project names and department names.

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical
attribute names in all relations. This creates problems when the same real-world
concept is used in different roles (meanings) in the same relation. For example, the
concept of Social Security number appears twice in the EMPLOYEE relation of
Figure 5.5: once in the role of the employee’s SSN, and once in the role of the
supervisor’s SSN. We are required to give them distinct attribute names—Ssn and
Super_ssn, respectively—because they appear in the same relation and in order to
distinguish their meaning.

Each relational DBMS must have a data definition language (DDL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for
this purpose. We present the SQL DDL in Sections 6.1 and 6.2.
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Figure 5.6
One possible database state for the COMPANY relational database schema.
EMPLOYEE
Fname | Minit | Lname Ssn Bdate Address Sex |Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M [30000 [333445555 5
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M |40000 (888665555 | 5
Alicia J Zelaya | 999887777 |1968-01-19 [3321 Castle, Spring, TX F |25000 |987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 |888665555 | 4
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M {38000 [333445555 5
Joyce A | English | 453453453 | 1972-07-31 [5631 Rice, Houston, TX | F [25000 333445555 | 5
Ahmad \Y Jabbar | 987987987 |1969-03-29 | 980 Dallas, Houston, TX M |25000 |987654321 4
James E Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX M |55000 |NULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation
Research 5 333445555 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headquarters 1 888665555 1981-06-19 5 Bellaire
5 Sugarland
5 Houston
WORKS_ON PROJECT
Essn Pno Hours Pname Pnumber | Plocation Dnum
123456789 1 325 ProductX 1 Bellaire 5
123456789 2 7.5 ProductY Sugarland 5
666884444 3 40.0 ProductZ 3 Houston 5
453453453 1 20.0 Computerization 10 Stafford 4
453453453 2 20.0 Reorganization 20 Houston 1
333445555 2 10.0 Newbenefits 30 Stafford 4
333445555 3 10.0
333445555 10 10.0 DEPENDENT
333445555 20 | 100 Essn Dependent_name | Sex Bdate Relationship
999887777 30 30.0 333445555 Alice F | 1986-04-05 | Daughter
999887777 10 | 100 333445555 | Theodore M | 1983-10-25 | Son
987987987 10 | 850 333445555 | Joy F | 1958-05-08 | Spouse
987987987 30 5.0 987654321 Abner M | 1942-02-28 | Spouse
987654321 30 | 200 123456789 Michael M | 1988-01-04 | Son
987654321 20 15.0 123456789 Alice F 1988-12-30 | Daughter
888665555 20 NULL 123456789 Elizabeth F 1967-05-05 | Spouse
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Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schema. In addition to domain, key, and NOT NULL
constraints, two other types of constraints are considered part of the relational
model: entity integrity and referential integrity.

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be NULL. This is
because the primary key value is used to identify individual tuples in a relation. Hav-
ing NULL values for the primary key implies that we cannot identify some tuples. For
example, if two or more tuples had NULL for their primary keys, we may not be able
to distinguish them if we try to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations.
The referential integrity constraint is specified between two relations and is used to
maintain the consistency among tuples in the two relations. Informally, the referen-
tial integrity constraint states that a tuple in one relation that refers to another rela-
tion must refer to an existing tuple in that relation. For example, in Figure 5.6, the
attribute Dno of EMPLOYEE gives the department number for which each employee
works; hence, its value in every EMPLOYEE tuple must match the Dnumber value of
some tuple in the DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity
constraint between the two relation schemas R; and R,. A set of attributes FK in
relation schema R; is a foreign key of R; that references relation R, if it satisfies the
following rules:

1. The attributes in FK have the same domain(s) as the primary key attributes
PK of R,; the attributes FK are said to reference or refer to the relation R,.

2. A value of FK in a tuple #; of the current state r;(R;) either occurs as a value
of PK for some tuple #, in the current state r,(R,) or is NULL. In the former
case, we have #[FK] = t,[PK], and we say that the tuple t; references or
refers to the tuple t,.

In this definition, R; is called the referencing relation and R, is the referenced
relation. If these two conditions hold, a referential integrity constraint from R; to
R, is said to hold. In a database of many relations, there are usually many referential
integrity constraints.

To specify these constraints, first we must have a clear understanding of the mean-
ing or role that each attribute or set of attributes plays in the various relation sche-
mas of the database. Referential integrity constraints typically arise from the
relationships among the entities represented by the relation schemas. For example,
consider the database shown in Figure 5.6. In the EMPLOYEE relation, the attribute
Dno refers to the department for which an employee works; hence, we designate Dno
to be a foreign key of EMPLOYEE referencing the DEPARTMENT relation. This means
that a value of Dno in any tuple #; of the EMPLOYEE relation must match a value of
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the primary key of DEPARTMENT—the Dnumber attribute—in some tuple #, of the
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not
belong to a department or will be assigned to a department later. For example, in
Figure 5.6 the tuple for employee John Smith’ references the tuple for the ‘Research’
department, indicating that John Smith’ works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute
Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is another
employee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is a
foreign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple for
employee John Smith’ references the tuple for employee ‘Franklin Wong,” indicat-
ing that ‘Franklin Wong’ is the supervisor of John Smith’.

We can diagrammatically display referential integrity constraints by drawing a directed
arc from each foreign key to the relation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 5.7 shows the schema in
Figure 5.5 with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema (that is,
specified as part of its definition) if we want the DBMS to enforce these constraints on

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

| Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno |

DEPARTMENT

Aﬂﬂ* |

| Dname | Dnumber | Mgr_ssn| Mgr_start_date|

DEPT_LOCATIONS

| Dnumber | Dlocation |

PROJECT
| Pname | Pnumber | Plocation | Dnum

A [
WORKS_ON

| Essn [ Pno

| Hours |

DEPENDENT

| Essn | Dependent_name | Sex | Bdate | Relationship
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the database states. Hence, the DDL includes provisions for specifying the various
types of constraints so that the DBMS can automatically enforce them. In SQL, the
CREATE TABLE statement of the SQL DDL allows the definition of primary key,
unique key, NOT NULL, entity integrity, and referential integrity constraints, among
other constraints (see Sections 6.1 and 6.2) .

5.2.5 Other Types of Constraints

The preceding integrity constraints are included in the data definition language
because they occur in most database applications. Another class of general con-
straints, sometimes called semantic integrity constraints, are not part of the DDL
and have to be specified and enforced in a different way. Examples of such con-
straints are the salary of an employee should not exceed the salary of the employee’s
supervisor and the maximum number of hours an employee can work on all projects
per week is 56. Such constraints can be specified and enforced within the applica-
tion programs that update the database, or by using a general-purpose constraint
specification language. Mechanisms called triggers and assertions can be used in
SQL, through the CREATE ASSERTION and CREATE TRIGGER statements, to specify
some of these constraints (see Chapter 7). It is more common to check for these
types of constraints within the application programs than to use constraint specifi-
cation languages because the latter are sometimes difficult and complex to use, as
we discuss in Section 26.1.

The types of constraints we discussed so far may be called state constraints
because they define the constraints that a valid state of the database must satisty.
Another type of constraint, called transition constraints, can be defined to deal
with state changes in the database.'! An example of a transition constraint is: “the
salary of an employee can only increase.” Such constraints are typically enforced
by the application programs or specified using active rules and triggers, as we dis-
cuss in Section 26.1.

5.3 Update Operations, Transactions,
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and
updates. The relational algebra operations, which can be used to specify retrievals,
are discussed in detail in Chapter 8. A relational algebra expression forms a new
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database to retrieve information. The user for-
mulates a query that specifies the data of interest, and a new relation is formed by
applying relational operators to retrieve this data. The result relation becomes the
answer to (or result of) the user’s query. Chapter 8 also introduces the language

" State constraints are sometimes called static constraints, and transition constraints are sometimes
called dynamic constraints.
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called relational calculus, which is used to define a query declaratively without giv-
ing a specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic operations that can change the states of relations in the data-
base: Insert, Delete, and Update (or Modify). They insert new data, delete old data,
or modify existing data records, respectively. Insert is used to insert one or more
new tuples in a relation, Delete is used to delete tuples, and Update (or Modify) is
used to change the values of some attributes in existing tuples. Whenever these
operations are applied, the integrity constraints specified on the relational database
schema should not be violated. In this section we discuss the types of constraints
that may be violated by each of these operations and the types of actions that may
be taken if an operation causes a violation. We use the database shown in Figure 5.6
for examples and discuss only domain constraints, key constraints, entity integrity
constraints, and the referential integrity constraints shown in Figure 5.7. For each
type of operation, we give some examples and discuss any constraints that each
operation may violate.

5.3.1 The Insert Operation

The Insert operation provides a list of attribute values for a new tuple ¢ that is to be
inserted into a relation R. Insert can violate any of the four types of constraints.
Domain constraints can be violated if an attribute value is given that does not
appear in the corresponding domain or is not of the appropriate data type. Key
constraints can be violated if a key value in the new tuple ¢ already exists in another
tuple in the relation r(R). Entity integrity can be violated if any part of the primary
key of the new tuple t is NULL. Referential integrity can be violated if the value of
any foreign key in f refers to a tuple that does not exist in the referenced relation.
Here are some examples to illustrate this discussion.

u Operation:
Insert <‘Cecilia, ‘F, ‘Kolonsky), NULL, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion violates the entity integrity constraint (NULL for the
primary key Ssn), so it is rejected.

® Operation:
Insert <Alicia; T, “Zelaya, ‘999887777, ‘1960-04-05, ‘6357 Windy Lane, Katy,
TX, E 28000, ‘987654321, 4> into EMPLOYEE.
Result: This insertion violates the key constraint because another tuple with
the same Ssn value already exists in the EMPLOYEE relation, and so it is
rejected.

u Operation:
Insert <‘Cecilia, ‘F, ‘Kolonsky, ‘677678989, ‘1960-04-05; ‘6357 Windswept,
Katy, TX; F, 28000, ‘987654321, 7> into EMPLOYEE.
Result: This insertion violates the referential integrity constraint specified on
Dno in EMPLOYEE because no corresponding referenced tuple exists in
DEPARTMENT with Dnumber = 7.
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u Operation:
Insert <‘Cecilia, ‘F; ‘Kolonsky), ‘677678989, ‘1960-04-05’, ‘6357 Windy Lane,
Katy, TX; F, 28000, NULL, 4> into EMPLOYEE.
Result: This insertion satisfies all constraints, so it is acceptable.

If an insertion violates one or more constraints, the default option is to reject the
insertion. In this case, it would be useful if the DBMS could provide a reason to the
user as to why the insertion was rejected. Another option is to attempt to correct the
reason for rejecting the insertion, but this is typically not used for violations caused by
Insert; rather, it is used more often in correcting violations for Delete and Update.
In the first operation, the DBMS could ask the user to provide a value for Ssn, and
could then accept the insertion if a valid Ssn value is provided. In operation 3, the
DBMS could either ask the user to change the value of Dno to some valid value
(or set it to NULL), or it could ask the user to insert a DEPARTMENT tuple with
Dnumber = 7 and could accept the original insertion only after such an operation
was accepted. Notice that in the latter case the insertion violation can cascade back
to the EMPLOYEE relation if the user attempts to insert a tuple for department 7 with
a value for Mgr_ssn that does not exist in the EMPLOYEE relation.

5.3.2 The Delete Operation

The Delete operation can violate only referential integrity. This occurs if the tuple
being deleted is referenced by foreign keys from other tuples in the database. To
specify deletion, a condition on the attributes of the relation selects the tuple (or
tuples) to be deleted. Here are some examples.

u Operation:
Delete the WORKS_ON tuple with Essn = ‘999887777 and Pno = 10.
Result: This deletion is acceptable and deletes exactly one tuple.

m Operation:
Delete the EMPLOYEE tuple with Ssn = ‘999887777
Result: This deletion is not acceptable, because there are tuples in
WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is
deleted, referential integrity violations will result.

u Operation:
Delete the EMPLOYEE tuple with Ssn = 333445555’
Result: This deletion will result in even worse referential integrity violations,
because the tuple involved is referenced by tuples from the EMPLOYEE,
DEPARTMENT, WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a violation. The first
option, called restrict, is to reject the deletion. The second option, called cascade, is
to attempt to cascade (or propagate) the deletion by deleting tuples that reference the
tuple that is being deleted. For example, in operation 2, the DBMS could automati-
cally delete the offending tuples from WORKS_ON with Essn = ‘999887777°. A
third option, called set null or set default, is to modify the referencing attribute
values that cause the violation; each such value is either set to NULL or changed to
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reference another default valid tuple. Notice that if a referencing attribute that
causes a violation is part of the primary key, it cannot be set to NULL; otherwise, it
would violate entity integrity.

Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from
WORKS_ON and DEPENDENT with Essn = ‘333445555, Tuples in EMPLOYEE with
Super_ssn = 333445555 and the tuple in DEPARTMENT with Mgr_ssn = 333445555
can have their Super_ssn and Mgr_ssn values changed to other valid values or to
NULL. Although it may make sense to delete automatically the WORKS_ON and
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to delete
other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS
will allow the database designer to specify which of the options applies in case of a
violation of the constraint. We discuss how to specify these options in the SQL DDL
in Chapter 6.

5.3.3 The Update Operation

The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modified.
Here are some examples.

m Operation:
Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777 to 28000.
Result: Acceptable.

u Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777 to 1.
Result: Acceptable.

m Operation:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777 to 7.
Result: Unacceptable, because it violates referential integrity.

u Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777 to ‘987654321
Result: Unacceptable, because it violates primary key constraint by repeating
a value that already exists as a primary key in another tuple; it violates refer-
ential integrity constraints because there are other relations that refer to the
existing value of Ssn.

Updating an attribute that is neither part of a primary key nor part of a foreign key
usually causes no problems; the DBMS need only check to confirm that the new
value is of the correct data type and domain. Modifying a primary key value is simi-
lar to deleting one tuple and inserting another in its place because we use the pri-
mary key to identify tuples. Hence, the issues discussed earlier in both Sections 5.3.1
(Insert) and 5.3.2 (Delete) come into play. If a foreign key attribute is modified, the



DBMS must make sure that the new value refers to an existing tuple in the refer-
enced relation (or is set to NULL). Similar options exist to deal with referential integ-
rity violations caused by Update as those options discussed for the Delete operation.
In fact, when a referential integrity constraint is specified in the DDL, the DBMS will
allow the user to choose separate options to deal with a violation caused by Delete
and a violation caused by Update (see Section 6.2).

5.3.4 The Transaction Concept

A database application program running against a relational database typically exe-
cutes one or more fransactions. A transaction is an executing program that includes
some database operations, such as reading from the database, or applying inser-
tions, deletions, or updates to the database. At the end of the transaction, it must
leave the database in a valid or consistent state that satisfies all the constraints spec-
ified on the database schema. A single transaction may involve any number of
retrieval operations (to be discussed as part of relational algebra and calculus in
Chapter 8, and as a part of the language SQL in Chapters 6 and 7) and any number
of update operations. These retrievals and updates will together form an atomic
unit of work against the database. For example, a transaction to apply a bank with-
drawal will typically read the user account record, check if there is a sufficient bal-
ance, and then update the record by the withdrawal amount.

A large number of commercial applications running against relational databases in
online transaction processing (OLTP) systems are executing transactions at rates
that reach several hundred per second. Transaction processing concepts, concur-
rent execution of transactions, and recovery from failures will be discussed in
Chapters 20 to 22.

5.4 Summary

In this chapter we presented the modeling concepts, data structures, and constraints
provided by the relational model of data. We started by introducing the concepts of
domains, attributes, and tuples. Then, we defined a relation schema as a list of attri-
butes that describe the structure of a relation. A relation, or relation state, is a set of
tuples that conforms to the schema.

Several characteristics differentiate relations from ordinary tables or files. The first
is that a relation is not sensitive to the ordering of tuples. The second involves the
ordering of attributes in a relation schema and the corresponding ordering of val-
ues within a tuple. We gave an alternative definition of relation that does not require
ordering of attributes, but we continued to use the first definition, which requires
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-
mation. We emphasized that NULL values should be avoided as much as possible.

We classified database constraints into inherent model-based constraints, explicit
schema-based constraints, and semantic constraints or business rules. Then, we

5.4 Summary
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discussed the schema constraints pertaining to the relational model, starting with
domain constraints, then key constraints (including the concepts of superkey,
key, and primary key), and the NOT NULL constraint on attributes. We defined
relational databases and relational database schemas. Additional relational con-
straints include the entity integrity constraint, which prohibits primary key attri-
butes from being NULL. We described the interrelation referential integrity
constraint, which is used to maintain consistency of references among tuples
from various relations.

The modification operations on the relational model are Insert, Delete, and Update.
Each operation may violate certain types of constraints (refer to Section 5.3). When-
ever an operation is applied, the resulting database state must be a valid state.
Finally, we introduced the concept of a transaction, which is important in relational
DBMSs because it allows the grouping of several database operations into a single
atomic action on the database.

Review Questions

5.1. Define the following terms as they apply to the relational model of data:
domain, attribute, n-tuple, relation schema, relation state, degree of a rela-
tion, relational database schema, and relational database state.

5.2. Why are tuples in a relation not ordered?
5.3. Why are duplicate tuples not allowed in a relation?
5.4. What is the difference between a key and a superkey?

5.5. Why do we designate one of the candidate keys of a relation to be the pri-
mary key?

5.6. Discuss the characteristics of relations that make them different from ordi-
nary tables and files.

5.7. Discuss the various reasons that lead to the occurrence of NULL values in
relations.

5.8. Discuss the entity integrity and referential integrity constraints. Why is each
considered important?

5.9. Define foreign key. What is this concept used for?

5.10. What is a transaction? How does it differ from an Update operation?

Exercises

5.11. Suppose that each of the following Update operations is applied directly to
the database state shown in Figure 5.6. Discuss all integrity constraints



5.12.

5.13.

violated by each operation, if any, and the different ways of enforcing
these constraints.

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543, ‘1972-06-21’, 2365 Newcastle
Rd, Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.

Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT.

Insert <‘Production’, 4, ‘943775543, 2007-10-01"> into DEPARTMENT.
Insert <‘677678989’, NULL, ‘40.0’> into WORKS_ON.

Insert <‘453453453’, ‘John’, ‘M’, °1990-12-12’, ‘spouse’> into DEPENDENT.
Delete the WORKS_ON tuples with Essn = ‘333445555

Delete the EMPLOYEE tuple with Ssn = “987654321’.

Delete the PROJECT tuple with Pname = ‘ProductX’.

i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with
Dnumber = 5 to ‘123456789” and 2007-10-01’, respectively.

j. Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn =
‘999887777 to ‘943775543’

k. Modify the Hours attribute of the WORKS_ON tuple with Essn
‘999887777 and Pno = 10 to ‘5.0’.

S
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Consider the AIRLINE relational database schema shown in Figure 5.8,
which describes a database for airline flight information. Each FLIGHT is
identified by a Flight_number, and consists of one or more FLIGHT_LEGs
with Leg_numbers 1, 2, 3, and so on. Each FLIGHT_LEG has scheduled
arrival and departure times, airports, and one or more LEG_INSTANCEs—
one for each Date on which the flight travels. FAREs are kept for each
FLIGHT. For each FLIGHT_LEG instance, SEAT_RESERVATIONs are kept, as
are the AIRPLANE used on the leg and the actual arrival and departure times
and airports. An AIRPLANE is identified by an Airplane_id and is of a particu-
lar AIRPLANE_TYPE. CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTs
at which they can land. An AIRPORT is identified by an Airport_code. Con-
sider an update for the AIRLINE database to enter a reservation on a particu-
lar flight or flight leg on a given date.

a. Give the operations for this update.

b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential integ-
rity constraints, and which are not?

d. Specify all the referential integrity constraints that hold on the schema
shown in Figure 5.8.

Consider the relation CLASS(Course#, Univ_Section#, Instructor_name,
Semester, Building_code, Room#, Time_period, Weekdays, Credit_hours). This rep-
resents classes taught in a university, with unique Univ_section#s. Identify what
you think should be various candidate keys, and write in your own words the
conditions or assumptions under which each candidate key would be valid.
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AIRPORT
| Airport_code | Name | Gity | State |

FLIGHT
| Flight_number | Airline | Weekdays |

FLIGHT_LEG
| Flight_number | Leg_number | Departure_airport_code | Scheduled_departure_time
Arrival_airport_code | Scheduled_arrival_time

LEG_INSTANCE

Flight_number Leg_number | Date | Number_of_available_seats | Airplane_id
Departure_airport_code | Departure_time | Arrival_airport_code | Arrival_time

FARE

| FIight_number | Fare_code | Amount | Restrictions |

AIRPLANE_TYPE

| Airplane_type_name| Max_seats | Company |

CAN_LAND
| Airplane_type_name | Airport_code |

AIRPLANE

|Airplane_id | Total_number_of_seats | Airplane_type |

SEAT_RESERVATION
| Flight_number | Leg_number | Date| Seat_number | Customer_name Customer_phone

Figure 5.8
The AIRLINE relational database schema.

5.14. Consider the following six relations for an order-processing database appli-
cation in a company:
CUSTOMER(Cust#, Cname, City)
ORDER(Order#, Odate, Cust#, Ord_amt)
ORDER_ITEM(Order#, ltem#, Qty)




5.15.

5.16.

ITEM(ltem#, Unit_price)
SHIPMENT(Order#, Warehouse#, Ship_date)
WAREHOUSE (Warehouse#, City)

Here, Ord_amt refers to total dollar amount of an order; Odate is the date the
order was placed; and Ship_date is the date an order (or part of an order) is
shipped from the warehouse. Assume that an order can be shipped from several
warehouses. Specify the foreign keys for this schema, stating any assumptions
you make. What other constraints can you think of for this database?

Consider the following relations for a database that keeps track of business
trips of salespersons in a sales office:
SALESPERSON(Ssn, Name, Start_year, Dept_no)
TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)
EXPENSE(Trip_id, Account#, Amount)

A trip can be charged to one or more accounts. Specify the foreign keys for
this schema, stating any assumptions you make.

Consider the following relations for a database that keeps track of student
enrollment in courses and the books adopted for each course:
STUDENT(Ssn, Name, Major, Bdate)
COURSE(Course#, Cname, Dept)
ENROLL(Ssn, Course#, Quarter, Grade)
BOOK_ADOPTION(Course#, Quarter, Book_isbn)
TEXT(Book isbn, Book_title, Publisher, Author)

Specify the foreign keys for this schema, stating any assumptions you make.

. Consider the following relations for a database that keeps track of automo-

bile sales in a car dealership (OPTION refers to some optional equipment
installed on an automobile):
CAR(Serial no, Model, Manufacturer, Price)
OPTION(Serial no, Option_name, Price)
SALE(Salesperson _id, Serial no, Date, Sale_price)
SALESPERSON(Salesperson_id, Name, Phone)

First, specify the foreign keys for this schema, stating any assumptions you
make. Next, populate the relations with a few sample tuples, and then give
an example of an insertion in the SALE and SALESPERSON relations that
violates the referential integrity constraints and of another insertion that
does not.

. Database design often involves decisions about the storage of attributes. For

example, a Social Security number can be stored as one attribute or split into
three attributes (one for each of the three hyphen-delineated groups of

Exercises
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5.19.

Name

numbers in a Social Security number—XXX-XX-XXXX). However, Social
Security numbers are usually represented as just one attribute. The decision
is based on how the database will be used. This exercise asks you to think
about specific situations where dividing the SSN is useful.

Consider a STUDENT relation in a UNIVERSITY database with the following
attributes (Name, Ssn, Local_phone, Address, Cell_phone, Age, Gpa). Note that
the cell phone may be from a different city and state (or province) from the
local phone. A possible tuple of the relation is shown below:

Ssn Local_phone Address Cell_phone Age Gpa

George Shaw 123-45-6789 555-1234 123 Main St., 555-4321 19 3.75
William Edwards Anytown, CA 94539

5.20.

a. Identify the critical missing information from the Local_phone and
Cell_phone attributes. (Hint: How do you call someone who lives in a dif-
ferent state or province?)

b. Would you store this additional information in the Local_phone and
Cell_phone attributes or add new attributes to the schema for STUDENT?

c. Consider the Name attribute. What are the advantages and disadvantages
of splitting this field from one attribute into three attributes (first name,
middle name, and last name)?

d. What general guideline would you recommend for deciding when to
store information in a single attribute and when to split the information?

e. Suppose the student can have between 0 and 5 phones. Suggest two dif-
ferent designs that allow this type of information.

Recent changes in privacy laws have disallowed organizations from using
Social Security numbers to identify individuals unless certain restrictions
are satistied. As a result, most U.S. universities cannot use SSNs as primary
keys (except for financial data). In practice, Student_id, a unique identifier
assigned to every student, is likely to be used as the primary key rather than
SSN since Student_id can be used throughout the system.

a. Some database designers are reluctant to use generated keys (also known
as surrogate keys) for primary keys (such as Student_id) because they are
artificial. Can you propose any natural choices of keys that can be used to
identify the student record in a UNIVERSITY database?

b. Suppose that you are able to guarantee uniqueness of a natural key that
includes last name. Are you guaranteed that the last name will not change
during the lifetime of the database? If last name can change, what solu-
tions can you propose for creating a primary key that still includes last
name but remains unique?

c. What are the advantages and disadvantages of using generated (surro-
gate) keys?
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bibliographic notes for other aspects of the relational model and its languages, sys-
tems, extensions, and theory are given in Chapters 6 to 9, 14, 15, 23, and 30. Maier
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Basic SQL

The SQL language may be considered one of the
major reasons for the commercial success of rela-
tional databases. Because it became a standard for relational databases, users were
less concerned about migrating their database applications from other types of
database systems—for example, older network or hierarchical systems—to rela-
tional systems. This is because even if the users became dissatisfied with the partic-
ular relational DBMS product they were using, converting to another relational
DBMS product was not expected to be too expensive and time-consuming because
both systems followed the same language standards. In practice, of course, there
are differences among various commercial relational DBMS packages. However,
if the user is diligent in using only those features that are part of the standard,
and if two relational DBMSs faithfully support the standard, then conversion
between two systems should be simplified. Another advantage of having such a
standard is that users may write statements in a database application program
that can access data stored in two or more relational DBMSs without having to
change the database sublanguage (SQL), as long as both/all of the relational
DBMSs support standard SQL.

This chapter presents the practical relational model, which is based on the SQL
standard for commercial relational DBMSs, whereas Chapter 5 presented the most
important concepts underlying the formal relational data model. In Chapter 8 (Sec-
tions 8.1 through 8.5 ), we shall discuss the relational algebra operations, which are
very important for understanding the types of requests that may be specified on a
relational database. They are also important for query processing and optimization
in a relational DBMS, as we shall see in Chapters 18 and 19. However, the relational
algebra operations are too low-level for most commercial DBMS users because a
query in relational algebra is written as a sequence of operations that, when exe-
cuted, produces the required result. Hence, the user must specify how—that is, in
what order—to execute the query operations. On the other hand, the SQL language
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provides a higher-level declarative language interface, so the user only specifies
what the result is to be, leaving the actual optimization and decisions on how to
execute the query to the DBMS. Although SQL includes some features from rela-
tional algebra, it is based to a greater extent on the tuple relational calculus, which
we describe in Section 8.6. However, the SQL syntax is more user-friendly than
either of the two formal languages.

The name SQL is presently expanded as Structured Query Language. Originally,
SQL was called SEQUEL (Structured English QUEry Language) and was designed
and implemented at IBM Research as the interface for an experimental relational
database system called SYSTEM R. SQL is now the standard language for com-
mercial relational DBMSs. The standardization of SQL is a joint effort by the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO), and the first SQL standard is called SQL-86 or SQL1. A
revised and much expanded standard called SQL-92 (also referred to as SQL2)
was subsequently developed. The next standard that is well-recognized is
SQL:1999, which started out as SQL3. Additional updates to the standard are
SQL:2003 and SQL:2006, which added XML features (see Chapter 13) among
other updates to the language. Another update in 2008 incorporated more object
database features into SQL (see Chapter 12), and a further update is SQL:2011.
We will try to cover the latest version of SQL as much as possible, but some of the
newer features are discussed in later chapters. It is also not possible to cover the
language in its entirety in this text. It is important to note that when new features
are added to SQL, it usually takes a few years for some of these features to make it
into the commercial SQL DBMSs.

SQL is a comprehensive database language: It has statements for data definitions,
queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-
ties for defining views on the database, for specifying security and authorization,
for defining integrity constraints, and for specifying transaction controls. It also has
rules for embedding SQL statements into a general-purpose programming lan-
guage such as Java or C/C++.!

The later SQL standards (starting with SQL:1999) are divided into a core specifica-
tion plus specialized extensions. The core is supposed to be implemented by all
RDBMS vendors that are SQL compliant. The extensions can be implemented as
optional modules to be purchased independently for specific database applications
such as data mining, spatial data, temporal data, data warehousing, online analyti-
cal processing (OLAP), multimedia data, and so on.

Because the subject of SQL is both important and extensive, we devote two chap-
ters to its basic features. In this chapter, Section 6.1 describes the SQL DDL com-
mands for creating schemas and tables, and gives an overview of the basic data
types in SQL. Section 6.2 presents how basic constraints such as key and referen-
tial integrity are specified. Section 6.3 describes the basic SQL constructs for

'Originally, SOL had statements for creating and dropping indexes on the files that represent relations,
but these have been dropped from the SQL standard for some time.
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specifying retrieval queries, and Section 6.4 describes the SQL commands for
insertion, deletion, and update.

In Chapter 7, we will describe more complex SQL retrieval queries, as well as the
ALTER commands for changing the schema. We will also describe the CREATE
ASSERTION statement, which allows the specification of more general constraints
on the database, and the concept of triggers, which is presented in more detail in
Chapter 26. We discuss the SQL facility for defining views on the database in Chap-
ter 7. Views are also called virtual or derived tables because they present the user
with what appear to be tables; however, the information in those tables is derived
from previously defined tables.

Section 6.5 lists some SQL features that are presented in other chapters of the book;
these include object-oriented features in Chapter 12, XML in Chapter 13, transac-
tion control in Chapter 20, active databases (triggers) in Chapter 26, online analyti-
cal processing (OLAP) features in Chapter 29, and security/authorization in
Chapter 30. Section 6.6 summarizes the chapter. Chapters 10 and 11 discuss the
various database programming techniques for programming with SQL.

6.1 SQL Data Definition and Data Types

SQL uses the terms table, row, and column for the formal relational model terms
relation, tuple, and attribute, respectively. We will use the corresponding terms
interchangeably. The main SQL command for data definition is the CREATE state-
ment, which can be used to create schemas, tables (relations), types, and domains,
as well as other constructs such as views, assertions, and triggers. Before we describe
the relevant CREATE statements, we discuss schema and catalog concepts in Sec-
tion 6.1.1 to place our discussion in perspective. Section 6.1.2 describes how tables
are created, and Section 6.1.3 describes the most important data types available for
attribute specification. Because the SQL specification is very large, we give a descrip-
tion of the most important features. Further details can be found in the various SQL
standards documents (see end-of-chapter bibliographic notes).

6.1.1 Schema and Catalog Concepts in SQL

Early versions of SQL did not include the concept of a relational database schema;
all tables (relations) were considered part of the same schema. The concept of an
SQL schema was incorporated starting with SQL2 in order to group together tables
and other constructs that belong to the same database application (in some systems,
a schema is called a database). An SQL schema is identified by a schema name and
includes an authorization identifier to indicate the user or account who owns the
schema, as well as descriptors for each element in the schema. Schema elements
include tables, types, constraints, views, domains, and other constructs (such as
authorization grants) that describe the schema. A schema is created via the CREATE
SCHEMA statement, which can include all the schema elements’ definitions. Alter-
natively, the schema can be assigned a name and authorization identifier, and the
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elements can be defined later. For example, the following statement creates a
schema called COMPANY owned by the user with authorization identifier Jsmith’.
Note that each statement in SQL ends with a semicolon.

CREATE SCHEMA COMPANY AUTHORIZATION TJsmith’;

In general, not all users are authorized to create schemas and schema elements. The
privilege to create schemas, tables, and other constructs must be explicitly granted
to the relevant user accounts by the system administrator or DBA.

In addition to the concept of a schema, SQL uses the concept of a catalog—a named
collection of schemas.” Database installations typically have a default environment
and schema, so when a user connects and logs in to that database installation, the
user can refer directly to tables and other constructs within that schema without
having to specify a particular schema name. A catalog always contains a special
schema called INFORMATION_SCHEMA, which provides information on all the
schemas in the catalog and all the element descriptors in these schemas. Integrity
constraints such as referential integrity can be defined between relations only if
they exist in schemas within the same catalog. Schemas within the same catalog can
also share certain elements, such as type and domain definitions.

6.1.2 The CREATE TABLE Command in SOL

The CREATE TABLE command is used to specify a new relation by giving it a name
and specifying its attributes and initial constraints. The attributes are specified first,
and each attribute is given a name, a data type to specify its domain of values, and
possibly attribute constraints, such as NOT NULL. The key, entity integrity, and ref-
erential integrity constraints can be specified within the CREATE TABLE statement
after the attributes are declared, or they can be added later using the ALTER TABLE
command (see Chapter 7). Figure 6.1 shows sample data definition statements in
SQL for the COMPANY relational database schema shown in Figure 3.7.

Typically, the SQL schema in which the relations are declared is implicitly specified
in the environment in which the CREATE TABLE statements are executed. Alterna-
tively, we can explicitly attach the schema name to the relation name, separated by
a period. For example, by writing

CREATE TABLE COMPANY.EMPLOYEE
rather than
CREATE TABLE EMPLOYEE

as in Figure 6.1, we can explicitly (rather than implicitly) make the EMPLOYEE table
part of the COMPANY schema.

The relations declared through CREATE TABLE statements are called base tables
(or base relations); this means that the table and its rows are actually created

2SQL also includes the concept of a cluster of catalogs.
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CREATE TABLE EMPLOYEE Figure 6.1
( Fname VARCHAR(15) NOT NULL, SQL CREATE

Minit CHAR, TABLE data
Lname VARCHAR(15) NOT NULL, definition statements
Ssn CHAR(9) NOT NULL, for defining the
Bdate DATE, COMPANY schema
Address VARCHAR(30), from Figure B.7.
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,

PRIMARY KEY (Ssn),
CREATE TABLE DEPARTMENT

( Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(9) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY (Dnumber),

UNIQUE (Dname),

FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) );

CREATE TABLE DEPT_LOCATIONS

( Dnumber INT NOT NULL,
Dlocation VARCHAR(15) NOT NULL,

PRIMARY KEY (Dnumber, Dlocation),

FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );

CREATE TABLE PROJECT
( Pname VARCHAR(15) NOT NULL,
Pnumber INT NOT NULL,
Plocation VARCHAR(15),
Dnum INT NOT NULL,

PRIMARY KEY (Pnumber),

UNIQUE (Pname),

FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE WORKS_ON

(Essn CHAR(9) NOT NULL,
Pno INT NOT NULL,
Hours DECIMAL(3,1) NOT NULL,

PRIMARY KEY (Essn, Pno),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber) );

CREATE TABLE DEPENDENT
(Essn CHAR(9) NOT NULL,
Dependent_name VARCHAR(15) NOT NULL,
Sex CHAR,
Bdate DATE,
Relationship VARCHAR(8),

PRIMARY KEY (Essn, Dependent_name),
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn) );
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and stored as a file by the DBMS. Base relations are distinguished from virtual
relations, created through the CREATE VIEW statement (see Chapter 7), which
may or may not correspond to an actual physical file. In SQL, the attributes in a
base table are considered to be ordered in the sequence in which they are speci-
fied in the CREATE TABLE statement. However, rows (tuples) are not considered
to be ordered within a table (relation).

It is important to note that in Figure 6.1, there are some foreign keys that may cause
errors because they are specified either via circular references or because they refer
to a table that has not yet been created. For example, the foreign key Super_ssn in
the EMPLOYEE table is a circular reference because it refers to the EMPLOYEE table
itself. The foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table,
which has not been created yet. To deal with this type of problem, these constraints
can be left out of the initial CREATE TABLE statement, and then added later using
the ALTER TABLE statement (see Chapter 7). We displayed all the foreign keys in
Figure 6.1 to show the complete COMPANY schema in one place.

6.1.3 Attribute Data Types and Domains in SQL

The basic data types available for attributes include numeric, character string, bit
string, Boolean, date, and time.

® Numeric data types include integer numbers of various sizes (INTEGER or
INT, and SMALLINT) and floating-point (real) numbers of various precision
(FLOAT or REAL, and DOUBLE PRECISION). Formatted numbers can be
declared by using DECIMAL(S, j)—or DEC(i, j) or NUMERIC(i, j)—where i, the
precision, is the total number of decimal digits and j, the scale, is the number
of digits after the decimal point. The default for scale is zero, and the default
for precision is implementation-defined.

B Character-string data types are either fixed length—CHAR(n) or
CHARACTER(n), where # is the number of characters—or varying length—
VARCHAR(#1) or CHAR VARYING(7) or CHARACTER VARYING(#n), where n is
the maximum number of characters. When specifying a literal string value,
it is placed between single quotation marks (apostrophes), and it is case sen-
sitive (a distinction is made between uppercase and lowercase).® For fixed-
length strings, a shorter string is padded with blank characters to the right.
For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is
padded with five blank characters to become ‘Smith’ if needed. Padded
blanks are generally ignored when strings are compared. For comparison
purposes, strings are considered ordered in alphabetic (or lexicographic)
order; if a string str1 appears before another string str2 in alphabetic order,
then strl is considered to be less than str2.* There is also a concatenation
operator denoted by || (double vertical bar) that can concatenate two strings

SThis is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-
sitive, meaning that SOL treats uppercase and lowercase letters as equivalent in keywords.

“For nonalphabetic characters, there is a defined order.
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in SQL. For example, ‘abc’ || ‘XYZ’ results in a single string ‘abcXYZ'.
Another variable-length string data type called CHARACTER LARGE OBJECT
or CLOB is also available to specify columns that have large text values, such
as documents. The CLOB maximum length can be specified in kilobytes
(K), megabytes (M), or gigabytes (G). For example, CLOB(20M) specifies a
maximum length of 20 megabytes.

B Bit-string data types are either of fixed length n—BIT(n)—or varying length—
BIT VARYING(n), where # is the maximum number of bits. The default for n,
the length of a character string or bit string, is 1. Literal bit strings are placed
between single quotes but preceded by a B to distinguish them from character
strings; for example, B10101".> Another variable-length bitstring data type
called BINARY LARGE OBJECT or BLOB is also available to specify columns
that have large binary values, such as images. As for CLOB, the maximum
length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G).
For example, BLOB(30G) specifies a maximum length of 30 gigabits.

E A Boolean data type has the traditional values of TRUE or FALSE. In SQL,
because of the presence of NULL values, a three-valued logic is used, so a
third possible value for a Boolean data type is UNKNOWN. We discuss the
need for UNKNOWN and the three-valued logic in Chapter 7.

® The DATE data type has ten positions, and its components are YEAR, MONTH,
and DAY in the form YYYY-MM-DD. The TIME data type has at least eight
positions, with the components HOUR, MINUTE, and SECOND in the form
HH:MM:SS. Only valid dates and times should be allowed by the SQL imple-
mentation. This implies that months should be between 1 and 12 and days
must be between 01 and 31; furthermore, a day should be a valid day for the
corresponding month. The < (less than) comparison can be used with dates
or times—an earlier date is considered to be smaller than a later date, and
similarly with time. Literal values are represented by single-quoted strings
preceded by the keyword DATE or TIME; for example, DATE 2014-09-27 or
TIME ‘09:12:47’. In addition, a data type TIME(i), where i is called time frac-
tional seconds precision, specifies i + 1 additional positions for TIME—one
position for an additional period (.) separator character, and i positions for
specifying decimal fractions of a second. A TIME WITH TIME ZONE data type
includes an additional six positions for specifying the displacement from the
standard universal time zone, which is in the range +13:00 to —12:59 in units
of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the
local time zone for the SQL session.

Some additional data types are discussed below. The list of types discussed here is
not exhaustive; different implementations have added more data types to SQL.

B A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus
a minimum of six positions for decimal fractions of seconds and an optional
WITH TIME ZONE qualifier. Literal values are represented by single-quoted

5Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literal
string is preceded by X and each hexadecimal character represents 4 bits.
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strings preceded by the keyword TIMESTAMP, with a blank space between
data and time; for example, TIMESTAMP 2014-09-27 09:12:47.648302’.

B Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data
type. This specifies an interval—a relative value that can be used to increment
or decrement an absolute value of a date, time, or timestamp. Intervals are
qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

The format of DATE, TIME, and TIMESTAMP can be considered as a special type of
string. Hence, they can generally be used in string comparisons by being cast (or
coerced or converted) into the equivalent strings.

It is possible to specify the data type of each attribute directly, as in Figure 6.1; alter-
natively, a domain can be declared, and the domain name can be used with the
attribute specification. This makes it easier to change the data type for a domain
that is used by numerous attributes in a schema, and improves schema readability.
For example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

We can use SSN_TYPE in place of CHAR(9) in Figure 6.1 for the attributes Ssn and
Super_ssn of EMPLOYEE, Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn
of DEPENDENT. A domain can also have an optional default specification via a
DEFAULT clause, as we discuss later for attributes. Notice that domains may not be
available in some implementations of SQL.

In SQL, there is also a CREATE TYPE command, which can be used to create user
defined types or UDTs. These can then be used either as data types for attributes, or
as the basis for creating tables. We shall discuss CREATE TYPE in detail in Chap-
ter 12, because it is often used in conjunction with specifying object database features
that have been incorporated into more recent versions of SQL.

6.2 Specifying Constraints in SQL

This section describes the basic constraints that can be specified in SQL as part of
table creation. These include key and referential integrity constraints, restrictions
on attribute domains and NULLs, and constraints on individual tuples within a rela-
tion using the CHECK clause. We discuss the specification of more general con-
straints, called assertions, in Chapter 7.

6.2.1 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified
if NULL is not permitted for a particular attribute. This is always implicitly specified for
the attributes that are part of the primary key of each relation, but it can be specified for
any other attributes whose values are required not to be NULL, as shown in Figure 6.1.

It is also possible to define a default value for an attribute by appending the clause
DEFAULT <value> to an attribute definition. The default value is included in any
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CREATE TABLE EMPLOYEE
(.
Dno INT NOT NULL DEFAULT 1,
CONSTRAINT EMPPK
PRIMARY KEY (Ssn),
CONSTRAINT EMPSUPERFK
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET NULL ON UPDATE CASCADE,
CONSTRAINT EMPDEPTFK
FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPARTMENT
(.
Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555’

CONSTRAINT DEPTPK
PRIMARY KEY (Dnumber),
CONSTRAINT DEPTSK
UNIQUE (Dname),
CONSTRAINT DEPTMGRFK
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE SET DEFAULT ON UPDATE CASCADE);
CREATE TABLE DEPT_LOCATIONS
(ny
PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
ON DELETE CASCADE ON UPDATE CASCADE);

Figure 6.2

Example illustrating
how default attribute
values and referential
integrity triggered
actions are specified
in SQL.

new tuple if an explicit value is not provided for that attribute. Figure 6.2 illustrates
an example of specifying a default manager for a new department and a default
department for a new employee. If no default clause is specified, the default default
value is NULL for attributes that do not have the NOT NULL constraint.

Another type of constraint can restrict attribute or domain values using the CHECK
clause following an attribute or domain definition.® For example, suppose that
department numbers are restricted to integer numbers between 1 and 20; then, we
can change the attribute declaration of Dnumber in the DEPARTMENT table (see Fig-
ure 6.1) to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-
ment. For example, we can write the following statement:

CREATE DOMAIN D_NUM AS INTEGER
CHECK (D_NUM >0 AND D_NUM < 21);

5The CHECK clause can also be used for other purposes, as we shall see.



186

Chapter 6 Basic SQL

We can then use the created domain D_NUM as the attribute type for all attributes
that refer to department numbers in Figure 6.1, such as Dnumber of DEPARTMENT,
Dnum of PROJECT, Dno of EMPLOYEE, and so on.

6.2.2 Specifying Key and Referential Integrity Constraints

Because keys and referential integrity constraints are very important, there are spe-
cial clauses within the CREATE TABLE statement to specify them. Some examples to
illustrate the specification of keys and referential integrity are shown in Figure 6.1.7
The PRIMARY KEY clause specifies one or more attributes that make up the primary
key of a relation. If a primary key has a single attribute, the clause can follow the
attribute directly. For example, the primary key of DEPARTMENT can be specified as
follows (instead of the way it is specified in Figure 6.1):

Dnumber INT PRIMARY KEY,

The UNIQUE clause specifies alternate (unique) keys, also known as candidate keys
as illustrated in the DEPARTMENT and PROJECT table declarations in Figure 6.1.
The UNIQUE clause can also be specified directly for a unique key if it is a single
attribute, as in the following example:

Dname VARCHAR(15) UNIQUE,

Referential integrity is specified via the FOREIGN KEY clause, as shown in Fig-
ure 6.1. As we discussed in Section 5.2.4, a referential integrity constraint can be
violated when tuples are inserted or deleted, or when a foreign key or primary key
attribute value is updated. The default action that SQL takes for an integrity viola-
tion is to reject the update operation that will cause a violation, which is known as
the RESTRICT option. However, the schema designer can specify an alternative
action to be taken by attaching a referential triggered action clause to any foreign
key constraint. The options include SET NULL, CASCADE, and SET DEFAULT. An
option must be qualified with either ON DELETE or ON UPDATE. We illustrate this
with the examples shown in Figure 6.2. Here, the database designer chooses ON
DELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of
EMPLOYEE. This means that if the tuple for a supervising employee is deleted, the
value of Super_ssn is automatically set to NULL for all employee tuples that were
referencing the deleted employee tuple. On the other hand, if the Ssn value for a
supervising employee is updated (say, because it was entered incorrectly), the new
value is cascaded to Super_ssn for all employee tuples referencing the updated
employee tuple.®

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the
same for both ON DELETE and ON UPDATE: The value of the affected referencing
attributes is changed to NULL for SET NULL and to the specified default value of the

"Key and referential integrity constraints were not included in early versions of SQL.

8Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence may
have to be added later as a named constraint using the ALTER TABLE statement as we discussed at
the end of Section 6.1.2.
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referencing attribute for SET DEFAULT. The action for CASCADE ON DELETE is to
delete all the referencing tuples, whereas the action for CASCADE ON UPDATE is to
change the value of the referencing foreign key attribute(s) to the updated (new)
primary key value for all the referencing tuples. It is the responsibility of the data-
base designer to choose the appropriate action and to specify it in the database
schema. As a general rule, the CASCADE option is suitable for “relationship” rela-
tions (see Section 9.1) , such as WORKS_ON; for relations that represent multival-
ued attributes, such as DEPT_LOCATIONS; and for relations that represent weak
entity types, such as DEPENDENT.

6.2.3 Giving Names to Constraints

Figure 6.2 also illustrates how a constraint may be given a constraint name, follow-
ing the keyword CONSTRAINT. The names of all constraints within a particular
schema must be unique. A constraint name is used to identify a particular con-
straint in case the constraint must be dropped later and replaced with another con-
straint, as we discuss in Chapter 7. Giving names to constraints is optional. It is also
possible to temporarily defer a constraint until the end of a transaction, as we shall
discuss in Chapter 20 when we present transaction concepts.

6.2.4 Specifying Constraints on Tuples Using CHECK

In addition to key and referential integrity constraints, which are specified by spe-
cial keywords, other table constraints can be specified through additional CHECK
clauses at the end of a CREATE TABLE statement. These can be called row-based
constraints because they apply to each row individually and are checked whenever
a row is inserted or modified. For example, suppose that the DEPARTMENT table in
Figure 6.1 had an additional attribute Dept_create_date, which stores the date when
the department was created. Then we could add the following CHECK clause at the
end of the CREATE TABLE statement for the DEPARTMENT table to make sure that a
manager’s start date is later than the department creation date.

CHECK (Dept_create_date <= Mgr_start_date);

The CHECK clause can also be used to specify more general constraints using
the CREATE ASSERTION statement of SQL. We discuss this in Chapter 7 because
it requires the full power of queries, which are discussed in Sections 6.3
and 7.1.

6.3 Basic Retrieval Queries in SQL

SQL has one basic statement for retrieving information from a database: the
SELECT statement. The SELECT statement is not the same as the SELECT operation
of relational algebra, which we shall discuss in Chapter 8. There are many options
and flavors to the SELECT statement in SQL, so we will introduce its features grad-
ually. We will use example queries specified on the schema of Figure 5.5 and will
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refer to the sample database state shown in Figure 5.6 to show the results of some
of these queries. In this section, we present the features of SQL for simple retrieval
queries. Features of SQL for specifying more complex retrieval queries are pre-
sented in Section 7.1.

Before proceeding, we must point out an important distinction between the practical
SQL model and the formal relational model discussed in Chapter 5: SQL allows a
table (relation) to have two or more tuples that are identical in all their attribute
values. Hence, in general, an SQL table is not a set of tuples, because a set does not
allow two identical members; rather, it is a multiset (sometimes called a bag) of
tuples. Some SQL relations are constrained to be sets because a key constraint has
been declared or because the DISTINCT option has been used with the SELECT state-
ment (described later in this section). We should be aware of this distinction as we
discuss the examples.

6.3.1 The SELECT-FROM-WHERE Structure
of Basic SOL Queries

Queries in SQL can be very complex. We will start with simple queries, and then
progress to more complex ones in a step-by-step manner. The basic form of the
SELECT statement, sometimes called a mapping or a select-from-where block, is
formed of the three clauses SELECT, FROM, and WHERE and has the following form:’

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

where

B <attribute list> is a list of attribute names whose values are to be retrieved by
the query.
m <table list> is a list of the relation names required to process the query.

B <condition> is a conditional (Boolean) expression that identifies the tuples
to be retrieved by the query.

In SQL, the basic logical comparison operators for comparing attribute values with
one another and with literal constants are =, <, <=, >, >=, and <>. These correspond
to the relational algebra operators =, <, <, >, 2, and #, respectively, and to the
C/C++ programming language operators =, <, <=, >, >=, and !=. The main syntactic
difference is the not equal operator. SQL has additional comparison operators that
we will present gradually.

We illustrate the basic SELECT statement in SQL with some sample queries. The
queries are labeled here with the same query numbers used in Chapter 8 for easy
cross-reference.

9The SELECT and FROM clauses are required in all SQL queries. The WHERE is optional (see Sec-
tion 6.3.3).
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Query 0. Retrieve the birth date and address of the employee(s) whose name is
‘John B. Smith’.

Qo0: SELECT Bdate, Address
FROM EMPLOYEE
WHERE Fname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

This query involves only the EMPLOYEE relation listed in the FROM clause. The
query selects the individual EMPLOYEE tuples that satisfy the condition of the
WHERE clause, then projects the result on the Bdate and Address attributes listed in
the SELECT clause.

The SELECT clause of SQL specifies the attributes whose values are to be retrieved,
which are called the projection attributes in relational algebra (see Chapter 8) and
the WHERE clause specifies the Boolean condition that must be true for any
retrieved tuple, which is known as the selection condition in relational algebra.
Figure 6.3(a) shows the result of query Q0 on the database of Figure 5.6.

We can think of an implicit tuple variable or iterator in the SQL query ranging or
looping over each individual tuple in the EMPLOYEE table and evaluating the condi-
tion in the WHERE clause. Only those tuples that satisfy the condition—that is,
those tuples for which the condition evaluates to TRUE after substituting their cor-
responding attribute values—are selected.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Qt: SELECT Fname, Lname, Address
FROM EMPLOYEE, DEPARTMENT
WHERE Dname = ‘Research’ AND Dnumber = Dno;

In the WHERE clause of Q1, the condition Dname = ‘Research’ is a selection condition
that chooses the particular tuple of interest in the DEPARTMENT table, because Dname
is an attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition,
because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE,
whenever the value of Dnumber in DEPARTMENT is equal to the value of Dno in
EMPLOYEE. The result of query Q1 is shown in Figure 6.3(b). In general, any number
of selection and join conditions may be specified in a single SQL query.

A query that involves only selection and join conditions plus projection attributes is
known as a select-project-join query. The next example is a select-project-join
query with two join conditions.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND
Plocation = ‘Stafford’
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Figure 6.3

Results of SOL queries when applied to the COMPANY database state shown
in Figure 5.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (H) Q10. (g) Q1C.

(a) Bdate Address (b) | Fname Lname Address
1965-01-09 | 731Fondren, Houston, TX John Smith 731 Fondren, Houston, TX
Franklin | Wong 638 Voss, Houston, TX
Ramesh | Narayan | 975 Fire Oak, Humble, TX
Joyce English | 5631 Rice, Houston, TX
(¢) | Pnumber | Dnum | Lname Address Bdate (f) Ssn Dname
10 Wallace | 291Berry, Bellaire, TX | 1941-06-20 123456789 Research
30 Wallace | 291Berry, Bellaire, TX | 1941-06-20 333445555 Research
999887777 Research
987654321 Research
(d) | EFname | E.Lname S.Fname S.Lname
John Smith Franklin Wong 666884444 | Research
453453453 | Research
Franklin Wong James Borg
Alicia Zelaya Jennifer Wallace 987987987 Research
Jennifer Wallace James Borg 888665555 | Research
Ramesh Narayan Franklin Wong 123456789 Administration
Joyce English Franklin Wong 333445555 | Administration
Ahmad Jabbar Jennifer Wallace 999887777 Administration
987654321 Administration
666884444 | Administration
(e) | E.Fname 453453453 | Administration
123456789 987987987 | Administration
333445555 888665555 | Administration
999887777 123456789 | Headquarters
987654321 333445555 Headquarters
666884444 999887777 Headquarters
453453453 087654321 | Headquarters
987987987 666884444 | Headquarters
888665555 453453453 Headquarters
987987987 Headquarters
888665555 | Headquarters
(@
Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
John B Smith 123456789 |1965-09-01 | 731 Fondren, Houston, TX | M | 30000 | 333445555 | 5
Franklin T Wong 333445555 [1955-12-08 | 638 Voss, Houston, TX M | 40000 | 888665555 | 5
Ramesh K Narayan | 666884444 |1962-09-15 | 975 Fire Oak, Humble, TX | M |38000 | 333445555 | 5
Joyce A English | 453453453 |1972-07-31 | 5631 Rice, Houston, TX F 25000 | 333445555 | 5
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The join condition Dnum = Dnumber relates a project tuple to its controlling depart-
ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-
ment tuple to the employee tuple who manages that department. Each tuple in the
result will be a combination of one project, one department (that controls the proj-
ect), and one employee (that manages the department). The projection attributes
are used to choose the attributes to be displayed from each combined tuple. The
result of query Q2 is shown in Figure 6.3(c).

6.3.2 Ambiguous Attribute Names, Aliasing,
Renaming, and Tuple Variables

In SQL, the same name can be used for two (or more) attributes as long as the
attributes are in different tables. If this is the case, and a multitable query refers to
two or more attributes with the same name, we must qualify the attribute name
with the relation name to prevent ambiguity. This is done by prefixing the rela-
tion name to the attribute name and separating the two by a period. To illustrate
this, suppose that in Figures 5.5 and 5.6 the Dno and Lname attributes of the
EMPLOYEE relation were called Dnumber and Name, and the Dname attribute of
DEPARTMENT was also called Name; then, to prevent ambiguity, query Q1 would
be rephrased as shown in Q1A. We must prefix the attributes Name and Dnumber
in Q1A to specify which ones we are referring to, because the same attribute
names are used in both relations:

Q1A: SELECT Fname, EMPLOYEE.Name, Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.Name = ‘Research’ AND
DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

Fully qualified attribute names can be used for clarity even if there is no ambi-
guity in attribute names. Q1 can be rewritten as Q1" below with fully qualified
attribute names. We can also rename the table names to shorter names by creat-
ing an alias for each table name to avoid repeated typing of long table names
(see Q8 below).

Qi SELECT EMPLOYEE.Fname, EMPLOYEE.LName,
EMPLOYEE.Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.DName = ‘Research’ AND
DEPARTMENT.Dnumber = EMPLOYEE.Dno;

The ambiguity of attribute names also arises in the case of queries that refer to the
same relation twice, as in the following example.

Query 8. For each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor.

Qs8: SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn = S.Ssn;
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In this case, we are required to declare alternative relation names E and S, called
aliases or tuple variables, for the EMPLOYEE relation. An alias can follow the key-
word AS, as shown in Q8, or it can directly follow the relation name—for example,
by writing EMPLOYEE E, EMPLOYEE S in the FROM clause of Q8. It is also possible
to rename the relation attributes within the query in SQL by giving them aliases.
For example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and
SO on.

In Q8, we can think of E and S as two different copies of the EMPLOYEE relation; the
first, E, represents employees in the role of supervisees or subordinates; the second,
S, represents employees in the role of supervisors. We can now join the two copies.
Of course, in reality there is only one EMPLOYEE relation, and the join condition is
meant to join the relation with itself by matching the tuples that satisfy the join
condition E.Super_ssn = S.Ssn. Notice that this is an example of a one-level recur-
sive query, as we will discuss in Section 8.4.2. In earlier versions of SQL, it was not
possible to specify a general recursive query, with an unknown number of levels, in
a single SQL statement. A construct for specifying recursive queries has been incor-
porated into SQL:1999 (see Chapter 7).

The result of query Q8 is shown in Figure 6.3(d). Whenever one or more aliases
are given to a relation, we can use these names to represent different references
to that same relation. This permits multiple references to the same relation
within a query.

We can use this alias-naming or renaming mechanism in any SQL query to specify
tuple variables for every table in the WHERE clause, whether or not the same rela-
tion needs to be referenced more than once. In fact, this practice is recommended
since it results in queries that are easier to comprehend. For example, we could
specify query Q1 as in Q1B:

Q1B: SELECT E.Fname, E.LName, E.Address
FROM EMPLOYEE AS E, DEPARTMENT AS D
WHERE D.DName = ‘Research’ AND D.Dnumber = E.Dno;

6.3.3 Unspecified WHERE Clause and Use of the Asterisk

We discuss two more features of SQL here. A missing WHERE clause indicates
no condition on tuple selection; hence, all tuples of the relation specified in the
FROM clause qualify and are selected for the query result. If more than one rela-
tion is specified in the FROM clause and there is no WHERE clause, then the
CROSS PRODUCT—all possible tuple combinations—of these relations is
selected. For example, Query 9 selects all EMPLOYEE Ssns (Figure 6.3(e)), and
Query 10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENT
Dname, regardless of whether the employee works for the department or not
(Figure 6.3(f)).
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Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of
EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn
FROM EMPLOYEE;

Q10: SELECT Ssn, Dname
FROM EMPLOYEE, DEPARTMENT;

It is extremely important to specify every selection and join condition in the WHERE
clause; if any such condition is overlooked, incorrect and very large relations may
result. Notice that Q10 is similar to a CROSS PRODUCT operation followed by a
PROJECT operation in relational algebra (see Chapter 8). If we specify all the attri-
butes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS PRODUCT
(except for duplicate elimination, if any).

To retrieve all the attribute values of the selected tuples, we do not have to list the
attribute names explicitly in SQL; we just specify an asterisk (*), which stands for all
the attributes. The * can also be prefixed by the relation name or alias; for example,
EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

Query Q1C retrieves all the attribute values of any EMPLOYEE who works in
DEPARTMENT number 5 (Figure 6.3(g)), query Q1D retrieves all the attributes of an
EMPLOYEE and the attributes of the DEPARTMENT in which he or she works for
every employee of the ‘Research’ department, and Q10A specifies the CROSS
PRODUCT of the EMPLOYEE and DEPARTMENT relations.

Q1C:  SELECT *
FROM EMPLOYEE
WHERE Dno =15;

Q1D: SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE Dname = ‘Research’ AND Dno = Dnumber;

Q10A: SELECT *
FROM EMPLOYEE, DEPARTMENT;

6.3.4 Tables as Sets in SQL

As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset;
duplicate tuples can appear more than once in a table, and in the result of a query.
SQL does not automatically eliminate duplicate tuples in the results of queries, for
the following reasons:

B Duplicate elimination is an expensive operation. One way to implement it is
to sort the tuples first and then eliminate duplicates.
® The user may want to see duplicate tuples in the result of a query.

® When an aggregate function (see Section 7.1.7) is applied to tuples, in most
cases we do not want to eliminate duplicates.
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Figure 6.4

Results of additional

SQL queries when
applied to the

COMPANY database

state shown in

Figure 5.6. (a) Q11.

(b) Q11A. (c) Q16.
(d)a18.

(a) | Salary (b) | Salary (©) | Fhame Lname
30000 30000
40000 40000
25000 25000
43000 43000
38000 38000 (d) | Fname Lname
25000 55000 James Borg
25000
55000

An SQL table with a key is restricted to being a set, since the key value must be dis-
tinct in each tuple.!® If we do want to eliminate duplicate tuples from the result of
an SQL query, we use the keyword DISTINCT in the SELECT clause, meaning that
only distinct tuples should remain in the result. In general, a query with SELECT
DISTINCT eliminates duplicates, whereas a query with SELECT ALL does not. Speci-
tying SELECT with neither ALL nor DISTINCT—as in our previous examples—is
equivalent to SELECT ALL. For example, Q11 retrieves the salary of every employee;
if several employees have the same salary, that salary value will appear as many
times in the result of the query, as shown in Figure 6.4(a). If we are interested only
in distinct salary values, we want each value to appear only once, regardless of how
many employees earn that salary. By using the keyword DISTINCT as in Q11A, we
accomplish this, as shown in Figure 6.4(b).

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary
values (Q11A).

Qi11: SELECT ALL Salary
FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary
FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set
theory, which are also part of relational algebra (see Chapter 8). There are set union
(UNION), set difference (EXCEPT),!! and set intersection (INTERSECT) operations.
The relations resulting from these set operations are sets of tuples; that is, duplicate
tuples are eliminated from the result. These set operations apply only to type-
compatible relations, so we must make sure that the two relations on which we apply
the operation have the same attributes and that the attributes appear in the same
order in both relations. The next example illustrates the use of UNION.

O general, an SQOL table is not required to have a key, although in most cases there will be one.

Min some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.
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(a R S (b) T (c) T
A
al al al a2
a2 a2 al a3
Figure 6.5
2 4 2
a a a The results of SQL multiset
a3 ad a2 operations. (a) Two tables,
a2 (d) T R(A) and S(A).
a3 A (b) RCAUNION ALL S(A).
4 ] (c) R(A) EXCEPT ALL S(A).
a a (d) R(A) INTERSECT ALL
ab a2 S(A).

Query 4. Make alist of all project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as a manager of the department
that controls the project.

Q4A: ( SELECT DISTINCT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum = Dnumber AND Mgr_ssn = Ssn
AND Lname = ‘Smith’)
UNION
( SELECT DISTINCT Pnumber
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE Pnumber = Pno AND Essn = Ssn
AND Lname = ‘Smith’);

The first SELECT query retrieves the projects that involve a ‘Smith” as manager of
the department that controls the project, and the second retrieves the projects that
involve a ‘Smith’ as a worker on the project. Notice that if several employees have
the last name ‘Smith’, the project names involving any of them will be retrieved.
Applying the UNION operation to the two SELECT queries gives the desired result.

SQL also has corresponding multiset operations, which are followed by the key-
word ALL (UNION ALL, EXCEPT ALL, INTERSECT ALL). Their results are multisets
(duplicates are not eliminated). The behavior of these operations is illustrated by
the examples in Figure 6.5. Basically, each tuple—whether it is a duplicate or not—
is considered as a different tuple when applying these operations.

6.3.5 Substring Pattern Matching and Arithmetic Operators

In this section we discuss several more features of SQL. The first feature allows
comparison conditions on only parts of a character string, using the LIKE compari-
son operator. This can be used for string pattern matching. Partial strings are spec-
ified using two reserved characters: % replaces an arbitrary number of zero or more
characters, and the underscore (_) replaces a single character. For example, con-
sider the following query.
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Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Address LIKE ‘%Houston, TX%’;

To retrieve all employees who were born during the 1970s, we can use Query Q12A.
Here, 7 must be the third character of the string (according to our format for date),
so we use the value *_ _ 5 ’, with each underscore serving as a place-

holder for an arbitrary character.
Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Bdate LIKE_ _ 7 ’s

If an underscore or % is needed as a literal character in the string, the character
should be preceded by an escape character, which is specified after the string using
the keyword ESCAPE. For example, ‘AB\_CD\%EF ESCAPE ‘\" represents the lit-
eral string ‘AB_CD%EF’ because \ is specified as the escape character. Any charac-
ter not used in the string can be chosen as the escape character. Also, we need a rule
to specify apostrophes or single quotation marks (“’) if they are to be included in a
string because they are used to begin and end strings. If an apostrophe (°) is needed,
it is represented as two consecutive apostrophes (”) so that it will not be interpreted
as ending the string. Notice that substring comparison implies that attribute values
are not atomic (indivisible) values, as we had assumed in the formal relational
model (see Section 5.1) .

Another feature allows the use of arithmetic in queries. The standard arithmetic
operators for addition (+), subtraction (-), multiplication (*), and division (/) can
be applied to numeric values or attributes with numeric domains. For example,
suppose that we want to see the effect of giving all employees who work on the
‘ProductX’ project a 10% raise; we can issue Query 13 to see what their salaries
would become. This example also shows how we can rename an attribute in the
query result using AS in the SELECT clause.

Query 13. Show the resulting salaries if every employee working on the
‘ProductX’ project is given a 10% raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal
FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
WHERE E.Ssn = W.Essn AND W.Pno = P.Pnumber AND
P.Pname = ‘ProductX’;

For string data types, the concatenate operator || can be used in a query to append
two string values. For date, time, timestamp, and interval data types, operators
include incrementing (+) or decrementing (-) a date, time, or timestamp by an
interval. In addition, an interval value is the result of the difference between two
date, time, or timestamp values. Another comparison operator, which can be used
for convenience, is BETWEEN, which is illustrated in Query 14.
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Query 14. Retrieve all employees in department 5 whose salary is between
$30,000 and $40,000.

Q14: SELECT *
FROM EMPLOYEE
WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-
dition ((Salary >= 30000) AND (Salary <= 40000)).

6.3.6 Ordering of Query Results

SQL allows the user to order the tuples in the result of a query by the values of one
or more of the attributes that appear in the query result, by using the ORDER BY
clause. This is illustrated by Query 15.

Query 15. Retrieve a list of employees and the projects they are working on,
ordered by department and, within each department, ordered alphabetically by
last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname
FROM DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W,
PROJECT AS P
WHERE D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno =
P.Pnumber
ORDER BY D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values. We can specify the keyword DESC
if we want to see the result in a descending order of values. The keyword ASC can be
used to specify ascending order explicitly. For example, if we want descending
alphabetical order on Dname and ascending order on Lname, Fname, the ORDER BY
clause of Q15 can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

6.3.7 Discussion and Summary of
Basic SQOL Retrieval Queries
A simple retrieval query in SQL can consist of up to four clauses, but only the first

two—SELECT and FROM—are mandatory. The clauses are specified in the follow-
ing order, with the clauses between square brackets [ ... ] being optional:

SELECT <attribute list>
FROM <table list>
[ WHERE <condition>]

[ ORDER BY <attribute list> ];

The SELECT clause lists the attributes to be retrieved, and the FROM clause
specifies all relations (tables) needed in the simple query. The WHERE clause
identifies the conditions for selecting the tuples from these relations, including
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join conditions if needed. ORDER BY specifies an order for displaying the results
of a query. Two additional clauses GROUP BY and HAVING will be described in
Section 7.1.8.

In Chapter 7, we will present more complex features of SQL retrieval queries. These
include the following: nested queries that allow one query to be included as part of
another query; aggregate functions that are used to provide summaries of the infor-
mation in the tables; two additional clauses (GROUP BY and HAVING) that can be
used to provide additional power to aggregate functions; and various types of joins
that can combine records from various tables in different ways.

6.4 INSERT, DELETE, and UPDATE
Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE, and
UPDATE. We discuss each of these in turn.

6.4.1 The INSERT Command

In its simplest form, INSERT is used to add a single tuple (row) to a relation (table).
We must specify the relation name and a list of values for the tuple. The values
should be listed in the same order in which the corresponding attributes were speci-
fied in the CREATE TABLE command. For example, to add a new tuple to the
EMPLOYEE relation shown in Figure 5.5 and specified in the CREATE TABLE
EMPLOYEE ... command in Figure 6.1, we can use U1:

U1: INSERT INTO EMPLOYEE
VALUES ( Richard’, ‘K, ‘Marini’, ‘653298653’, 1962-12-30, ‘98
Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4 );

A second form of the INSERT statement allows the user to specify explicit attribute
names that correspond to the values provided in the INSERT command. This is use-
ful if a relation has many attributes but only a few of those attributes are assigned
values in the new tuple. However, the values must include all attributes with NOT
NULL specification and no default value. Attributes with NULL allowed or DEFAULT
values are the ones that can be left out. For example, to enter a tuple for a new
EMPLOYEE for whom we know only the Fname, Lname, Dno, and Ssn attributes, we
can use U1A:

U1A: INSERTINTO EMPLOYEE (Fname, Lname, Dno, Ssn)
VALUES (‘Richard’, ‘Marini’, 4, ‘653298653’);

Attributes not specified in U1A are set to their DEFAULT or to NULL, and the values
are listed in the same order as the attributes are listed in the INSERT command itself.
It is also possible to insert into a relation multiple tuples separated by commas in a
single INSERT command. The attribute values forming each tuple are enclosed in
parentheses.
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A DBMS that fully implements SQL should support and enforce all the integrity
constraints that can be specified in the DDL. For example, if we issue the command
in U2 on the database shown in Figure 5.6, the DBMS should reject the operation
because no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly,
U2A would be rejected because no Ssn value is provided and it is the primary key,
which cannot be NULL.

u2: INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno)

VALUES (‘Robert’, ‘Hatcher’, ‘980760540’, 2);

(U2 is rejected if referential integrity checking is provided by DBMS.)
U2A: INSERT INTO EMPLOYEE (Fname, Lname, Dno)

VALUES (‘Robert’, ‘Hatcher’, 5);

(U2A is rejected if NOT NULL checking is provided by DBMS.)

A variation of the INSERT command inserts multiple tuples into a relation in con-
junction with creating the relation and loading it with the result of a query. For
example, to create a temporary table that has the employee last name, project name,
and hours per week for each employee working on a project, we can write the state-
ments in U3A and U3B:

U3A: CREATE TABLE WORKS_ON_INFO
( Emp_name VARCHAR(15),
Proj_name VARCHAR(15),
Hours_per_week DECIMAL(3,1) );
U3B: INSERT INTO WORKS_ON_INFO ( Emp_name, Proj_name,
Hours_per_week )
SELECT E.Lname, P.Pname, W.Hours
FROM PROJECT P, WORKS_ON W, EMPLOYEE E
WHERE P.Pnumber = W.Pno AND W.Essn = E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-
tion retrieved from the database by the query in U3B. We can now query
WORKS_ON_INFO as we would any other relation; when we do not need it anymore,
we can remove it by using the DROP TABLE command (see Chapter 7). Notice that
the WORKS_ON_INFO table may not be up to date; that is, if we update any of the
PROJECT,WORKS_ON, or EMPLOYEE relations after issuing U3B, the information
in WORKS_ON_INFO may become outdated. We have to create a view (see Chap-
ter 7) to keep such a table up to date.

Most DBMSs have bulk loading tools that allow a user to load formatted data from
a file into a table without having to write a large number of INSERT commands.
The user can also write a program to read each record in the file, format it as a row
in the table, and insert it using the looping constructs of a programming language
(see Chapters 10 and 11, where we discuss database programming techniques).

Another variation for loading data is to create a new table TNEW that has the
same attributes as an existing table T, and load some of the data currently in T
into TNEW. The syntax for doing this uses the LIKE clause. For example, if we
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want to create a table DSEMPS with a similar structure to the EMPLOYEE table
and load it with the rows of employees who work in department 5, we can write
the following SQL:

CREATE TABLE D5EMPS LIKE EMPLOYEE
(SELECT E.*

FROM EMPLOYEE AS E

WHERE E.Dno = 5) WITH DATA;

The clause WITH DATA specifies that the table will be created and loaded with
the data specified in the query, although in some implementations it may be
left out.

6.4.2 The DELETE Command

The DELETE command removes tuples from a relation. It includes a WHERE
clause, similar to that used in an SQL query, to select the tuples to be deleted.
Tuples are explicitly deleted from only one table at a time. However, the deletion
may propagate to tuples in other relations if referential triggered actions are spec-
ified in the referential integrity constraints of the DDL (see Section 6.2.2).2
Depending on the number of tuples selected by the condition in the WHERE
clause, zero, one, or several tuples can be deleted by a single DELETE command. A
missing WHERE clause specifies that all tuples in the relation are to be deleted;
however, the table remains in the database as an empty table. We must use the
DROP TABLE command to remove the table definition (see Chapter 7). The
DELETE commands in U4A to U4D, if applied independently to the database state
shown in Figure 5.6, will delete zero, one, four, and all tuples, respectively, from
the EMPLOYEE relation:

U4A: DELETE FROM EMPLOYEE
WHERE Lname = ‘Brown’;

U4B: DELETE FROM EMPLOYEE
WHERE Ssn = ‘123456789’;

u4cC: DELETE FROM EMPLOYEE
WHERE Dno = 5;

U4D: DELETE FROM EMPLOYEE;

6.4.3 The UPDATE Command

The UPDATE command is used to modify attribute values of one or more selected
tuples. As in the DELETE command, a WHERE clause in the UPDATE command
selects the tuples to be modified from a single relation. However, updating a pri-
mary key value may propagate to the foreign key values of tuples in other rela-
tions if such a referential triggered action is specified in the referential integrity

120ther actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.
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constraints of the DDL (see Section 6.2.2). An additional SET clause in the
UPDATE command specifies the attributes to be modified and their new values.
For example, to change the location and controlling department number of proj-
ect number 10 to ‘Bellaire’ and 5, respectively, we use U5:

Us: UPDATE PROJECT
SET Plocation = ‘Bellaire’, Dnum =5
WHERE Pnumber = 10;

Several tuples can be modified with a single UPDATE command. An example is to
give all employees in the ‘Research’ department a 10% raise in salary, as shown in
U6. In this request, the modified Salary value depends on the original Salary value
in each tuple, so two references to the Salary attribute are needed. In the SET
clause, the reference to the Salary attribute on the right refers to the old Salary
value before modification, and the one on the left refers to the new Salary value
after modification:

Ué: UPDATE EMPLOYEE
SET Salary = Salary * 1.1
WHERE Dno=>5;

It is also possible to specify NULL or DEFAULT as the new attribute value. Notice that
each UPDATE command explicitly refers to a single relation only. To modify multi-
ple relations, we must issue several UPDATE commands.

6.5 Additional Features of SQL

SQL has a number of additional features that we have not described in this chapter
but that we discuss elsewhere in the book. These are as follows:

® In Chapter 7, which is a continuation of this chapter, we will present the fol-
lowing SQL features: various techniques for specifying complex retrieval
queries, including nested queries, aggregate functions, grouping, joined
tables, outer joins, case statements, and recursive queries; SQL views, trig-
gers, and assertions; and commands for schema modification.

® SQL has various techniques for writing programs in various programming
languages that include SQL statements to access one or more databases.
These include embedded (and dynamic) SQL, SQL/CLI (Call Level Interface)
and its predecessor ODBC (Open Data Base Connectivity), and SQL/PSM
(Persistent Stored Modules). We discuss these techniques in Chapter 10. We
also describe how to access SQL databases through the Java programming
language using JDBC and SQLJ.

® Each commercial RDBMS will have, in addition to the SQL commands, a set
of commands for specifying physical database design parameters, file struc-
tures for relations, and access paths such as indexes. We called these com-
mands a storage definition language (SDL) in Chapter 2. Earlier versions of
SQL had commands for creating indexes, but these were removed from the
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language because they were not at the conceptual schema level. Many sys-
tems still have the CREATE INDEX commands; but they require a special
privilege. We describe this in Chapter 17.

® SQL has transaction control commands. These are used to specify units of
database processing for concurrency control and recovery purposes. We
discuss these commands in Chapter 20 after we discuss the concept of trans-
actions in more detail.

B SQL has language constructs for specifying the granting and revoking of
privileges to users. Privileges typically correspond to the right to use certain
SQL commands to access certain relations. Each relation is assigned an
owner, and either the owner or the DBA staff can grant to selected users the
privilege to use an SQL statement—such as SELECT, INSERT, DELETE, or
UPDATE—to access the relation. In addition, the DBA staff can grant the
privileges to create schemas, tables, or views to certain users. These SQL
commands—called GRANT and REVOKE—are discussed in Chapter 20,
where we discuss database security and authorization.

® SQL has language constructs for creating triggers. These are generally
referred to as active database techniques, since they specify actions that are
automatically triggered by events such as database updates. We discuss these
features in Section 26.1, where we discuss active database concepts.

B SQL has incorporated many features from object-oriented models to have
more powerful capabilities, leading to enhanced relational systems known
as object-relational. Capabilities such as creating complex-structured attri-
butes, specifying abstract data types (called UDTSs or user-defined types) for
attributes and tables, creating object identifiers for referencing tuples, and
specifying operations on types are discussed in Chapter 12.

® SQL and relational databases can interact with new technologies such as
XML (see Chapter 13) and OLAP/data warehouses (Chapter 29).

6.6 Summary

In this chapter, we introduced the SQL database language. This language and its
variations have been implemented as interfaces to many commercial relational
DBMSs, including Oracle’s Oracle; ibm’s DB2; Microsoft’s SQL Server; and many
other systems including Sybase and INGRES. Some open source systems also provide
SQL, such as MySQL and PostgreSQL. The original version of SQL was imple-
mented in the experimental DBMS called SYSTEM R, which was developed at IBM
Research. SQL is designed to be a comprehensive language that includes statements
for data definition, queries, updates, constraint specification, and view definition.
We discussed the following features of SQL in this chapter: the data definition com-
mands for creating tables, SQL basic data types, commands for constraint specifica-
tion, simple retrieval queries, and database update commands. In the next chapter,
we will present the following features of SQL: complex retrieval queries; views; trig-
gers and assertions; and schema modification commands.



Review Questions

6.1.

6.2.
6.3.

6.4.

How do the relations (tables) in SQL differ from the relations defined for-
mally in Chapter 3? Discuss the other differences in terminology. Why does
SQL allow duplicate tuples in a table or in a query result?

List the data types that are allowed for SQL attributes.

How does SQL allow implementation of the entity integrity and referential
integrity constraints described in Chapter 32 What about referential trig-
gered actions?

Describe the four clauses in the syntax of a simple SQL retrieval query. Show
what type of constructs can be specified in each of the clauses. Which are
required and which are optional?

Exercises

6.5.

6.6.

6.7.

6.8.

6.9.

Consider the database shown in Figure 1.2, whose schema is shown in Fig-
ure 2.1. What are the referential integrity constraints that should hold on the
schema? Write appropriate SQL DDL statements to define the database.

Repeat Exercise 6.5, but use the AIRLINE database schema of Figure 5.8.

Consider the LIBRARY relational database schema shown in Figure 6.6.
Choose the appropriate action (reject, cascade, set to NULL, set to default) for
each referential integrity constraint, both for the deletion of a referenced
tuple and for the update of a primary key attribute value in a referenced
tuple. Justify your choices.

Write appropriate SQL DDL statements for declaring the LIBRARY relational
database schema of Figure 6.6. Specify the keys and referential triggered
actions.

How can the key and foreign key constraints be enforced by the DBMS? Is
the enforcement technique you suggest difficult to implement? Can the con-
straint checks be executed efficiently when updates are applied to the data-
base?

. Specify the following queries in SQL on the COMPANY relational database

schema shown in Figure 5.5. Show the result of each query if it is applied to
the COMPANY database in Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong'.

Exercises
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6.11. Specify the updates of Exercise 3.11 using the SQL update commands.
6.12. Specify the following queries in SQL on the database schema of Figure 1.2.

a. Retrieve the names of all senior students majoring in ‘cs’ (computer
science).

b. Retrieve the names of all courses taught by Professor King in 2007 and
2008.

c. For each section taught by Professor King, retrieve the course number,
semester, year, and number of students who took the section.

d. Retrieve the name and transcript of each senior student (Class = 4)
majoring in CS. A transcript includes course name, course number,
credit hours, semester, year, and grade for each course completed by
the student.
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6.13. Write SQL update statements to do the following on the database schema
shown in Figure 1.2.

a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database.
b. Change the class of student ‘Smith’ to 2.
c. Insert a new course, <’Knowledge Engineering’, ‘cs4390’, 3, ‘cs’>.
d. Delete the record for the student whose name is ‘Smith’ and whose stu-
dent number is 17.
6.14. Design a relational database schema for a database application of your
choice.
a. Declare your relations using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database
application.

c. Based on your expected use of the database, choose some attributes that
should have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

6.15. Consider that the EMPLOYEE table’s constraint EMPSUPERFK as specified in
Figure 6.2 is changed to read as follows:

CONSTRAINT EMPSUPERFK
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
ON DELETE CASCADE ON UPDATE CASCADE,

Answer the following questions:
a. What happens when the following command is run on the database state
shown in Figure 5.62

DELETE EMPLOYEE WHERE Lname = ‘Borg’

b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint
ON DELETE?

6.16. Write SQL statements to create a table EMPLOYEE_BACKUP to back up the
EMPLOYEE table shown in Figure 5.6.

Selected Bibliography

The SQL language, originally named SEQUEL, was based on the language SQUARE
(Specifying Queries as Relational Expressions) described by Boyce et al. (1975). The
syntax of SQUARE was modified into SEQUEL (Chamberlin & Boyce, 1974) and
then into SEQUEL 2 (Chamberlin et al., 1976), on which SQL is based. The original
implementation of SEQUEL was done at IBM Research, San Jose, California. We
will give additional references to various aspects of SQL at the end of Chapter 7.
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chapter 7

More SQL: Complex Queries,
Triggers, Views, and
Schema Modification

This chapter describes more advanced features of
the SQL language for relational databases. We start
in Section 7.1 by presenting more complex features of SQL retrieval queries, such as
nested queries, joined tables, outer joins, aggregate functions, and grouping, and
case statements. In Section 7.2, we describe the CREATE ASSERTION statement,
which allows the specification of more general constraints on the database. We also
introduce the concept of triggers and the CREATE TRIGGER statement, which will
be presented in more detail in Section 26.1 when we present the principles of active
databases. Then, in Section 7.3, we describe the SQL facility for defining views on
the database. Views are also called virtual or derived tables because they present the
user with what appear to be tables; however, the information in those tables is
derived from previously defined tables. Section 7.4 introduces the SQL ALTER
TABLE statement, which is used for modifying the database tables and constraints.
Section 7.5 is the chapter summary.

This chapter is a continuation of Chapter 6. The instructor may skip parts of this
chapter if a less detailed introduction to SQL is intended.

7.1 More Complex SQL Retrieval Queries

In Section 6.3, we described some basic types of retrieval queries in SQL. Because of
the generality and expressive power of the language, there are many additional fea-
tures that allow users to specify more complex retrievals from the database. We
discuss several of these features in this section.
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7.1.1 Comparisons Involving NULL and Three-Valued Logic

SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that
NULL is used to represent a missing value, but that it usually has one of three differ-
ent interpretations—value unknown (value exists but is not known, or it is not
known whether or not the value exists), value not available (value exists but is pur-
posely withheld), or value not applicable (the attribute does not apply to this tuple
or is undefined for this tuple). Consider the following examples to illustrate each of
the meanings of NULL.

1. Unknown value. A person’s date of birth is not known, so it is represented
by NULL in the database. An example of the other case of unknown would be
NULL for a person’s home phone because it is not known whether or not the
person has a home phone.

2. Unavailable or withheld value. A person has a home phone but does not
want it to be listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a
person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for exam-
ple, a NULL for the home phone of a person can have any of the three meanings.
Hence, SQL does not distinguish among the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other
NULL value in the various database records. When a record with NULL in one of its
attributes is involved in a comparison operation, the result is considered to be
UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued
logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued
(Boolean) logic with values TRUE or FALSE. It is therefore necessary to define the
results (or truth values) of three-valued logical expressions when the logical con-
nectives AND, OR, and NOT are used. Table 7.1 shows the resulting values.

Table 7.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
(© NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN
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In Tables 7.1(a) and 7.1(b), the rows and columns represent the values of the results
of comparison conditions, which would typically appear in the WHERE clause of an
SQL query. Each expression result would have a value of TRUE, FALSE, or
UNKNOWN. The result of combining the two values using the AND logical connec-
tive is shown by the entries in Table 7.1(a). Table 7.1(b) shows the result of using
the OR logical connective. For example, the result of (FALSE AND UNKNOWN) is
FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 7.1(c)
shows the result of the NOT logical operation. Notice that in standard Boolean logic,
only TRUE or FALSE values are permitted; there is no UNKNOWN value.

In select-project-join queries, the general rule is that only those combinations of
tuples that evaluate the logical expression in the WHERE clause of the query to TRUE
are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are not
selected. However, there are exceptions to that rule for certain operations, such as
outer joins, as we shall see in Section 7.1.6.

SQL allows queries that check whether an attribute value is NULL. Rather than using
= or <> to compare an attribute value to NULL, SQL uses the comparison operators IS or
IS NOT. This is because SQL considers each NULL value as being distinct from every
other NULL value, so equality comparison is not appropriate. It follows that when a join
condition is specified, tuples with NULL values for the join attributes are not included in
the result (unless it is an OUTER JOIN; see Section 7.1.6). Query 18 illustrates NULL com-
parison by retrieving any employees who do not have a supervisor.

Query 18. Retrieve the names of all employees who do not have supervisors.

Qis: SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn IS NULL;

7.1.2 Nested Queries, Tuples,
and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used
in a comparison condition. Such queries can be conveniently formulated by using
nested queries, which are complete select-from-where blocks within another SQL
query. That other query is called the outer query. These nested queries can also
appear in the WHERE clause or the FROM clause or the SELECT clause or other
SQL clauses as needed. Query 4 is formulated in Q4 without a nested query, but it
can be rephrased to use nested queries as shown in Q4A. Q4A introduces the com-
parison operator IN, which compares a value v with a set (or multiset) of values V
and evaluates to TRUE if v is one of the elements in V.

In Q4A, the first nested query selects the project numbers of projects that have an
employee with last name ‘Smith’ involved as manager, whereas the second nested query
selects the project numbers of projects that have an employee with last name ‘Smith’
involved as worker. In the outer query, we use the OR logical connective to retrieve a
PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.
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Q4A: SELECT DISTINCT Pnumber

FROM PROJECT
WHERE Pnumber IN
(SELECT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum = Dnumber AND
Mgr_ssn = Ssn AND Lname = ‘Smith’)
OR
Pnumber IN
(SELECT Pno
FROM WORKS_ON, EMPLOYEE
WHERE Essn = Ssn AND Lname = ‘Smith’);

If a nested query returns a single attribute and a single tuple, the query result will be
a single (scalar) value. In such cases, it is permissible to use = instead of IN for the
comparison operator. In general, the nested query will return a table (relation),
which is a set or multiset of tuples.

SQL allows the use of tuples of values in comparisons by placing them within
parentheses. To illustrate this, consider the following query:

SELECT DISTINCT Essn
FROM WORKS_ON
WHERE (Pno, Hours) IN ( SELECT Pno, Hours
FROM WORKS_ON
WHERE Essn = 123456789’ );

This query will select the Essns of all employees who work the same (project, hours)
combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’)
works on. In this example, the IN operator compares the subtuple of values in paren-
theses (Pno, Hours) within each tuple in WORKS_ON with the set of type-compatible
tuples produced by the nested query.

In addition to the IN operator, a number of other comparison operators can be used
to compare a single value v (typically an attribute name) to a set or multiset v (typi-
cally a nested query). The = ANY (or = SOME) operator returns TRUE if the value v
is equal to some value in the set V and is hence equivalent to IN. The two keywords
ANY and SOME have the same effect. Other operators that can be combined with
ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-
bined with each of these operators. For example, the comparison condition (v > ALL V)
returns TRUE if the value v is greater than all the values in the set (or multiset) V.
An example is the following query, which returns the names of employees whose
salary is greater than the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL ( SELECT Salary
FROM EMPLOYEE
WHERE Dno=5);
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Notice that this query can also be specified using the MAX aggregate function (see
Section 7.1.7).

In general, we can have several levels of nested queries. We can once again be faced
with possible ambiguity among attribute names if attributes of the same name
exist—one in a relation in the FROM clause of the outer query, and another in a rela-
tion in the FROM clause of the nested query. The rule is that a reference to an
unqualified attribute refers to the relation declared in the innermost nested query.
For example, in the SELECT clause and WHERE clause of the first nested query of
Q4A, a reference to any unqualified attribute of the PROJECT relation refers to the
PROJECT relation specified in the FROM clause of the nested query. To refer to an
attribute of the PROJECT relation specified in the outer query, we specify and refer
to an alias (tuple variable) for that relation. These rules are similar to scope rules for
program variables in most programming languages that allow nested procedures
and functions. To illustrate the potential ambiguity of attribute names in nested
queries, consider Query 16.

Query 16. Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E
WHERE E.Ssn IN ( SELECT D.Essn
FROM DEPENDENT AS D

WHERE E.Fname = D.Dependent_name
AND E.Sex = D.Sex );

In the nested query of Q16, we must qualify E.Sex because it refers to the Sex attri-
bute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute
called Sex. If there were any unqualified references to Sex in the nested query, they
would refer to the Sex attribute of DEPENDENT. However, we would not have to
qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested
query because the DEPENDENT relation does not have attributes called Fname and
Ssn, so there is no ambiguity.

It is generally advisable to create tuple variables (aliases) for all the tables referenced
in an SQL query to avoid potential errors and ambiguities, as illustrated in Q16.

7.1.3 Correlated Nested Queries

Whenever a condition in the WHERE clause of a nested query references some attri-
bute of a relation declared in the outer query, the two queries are said to be correlated.
We can understand a correlated query better by considering that the nested query is
evaluated once for each tuple (or combination of tuples) in the outer query. For
example, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate the
nested query, which retrieves the Essn values for all DEPENDENT tuples with the
same sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple
is in the result of the nested query, then select that EMPLOYEE tuple.
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In general, a query written with nested select-from-where blocks and using the = or
IN comparison operators can always be expressed as a single block query. For exam-
ple, Q16 may be written as in Q16A:

Q16A: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.Ssn = D.Essn AND E.Sex = D.Sex

AND E.Fname = D.Dependent_name;

7.1.4 The EXISTS and UNIQUE Functions in SQL

EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence,
they can be used in a WHERE clause condition. The EXISTS function in SQL is used
to check whether the result of a nested query is empty (contains no tuples) or not.
The result of EXISTS is a Boolean value TRUE if the nested query result contains at
least one tuple, or FALSE if the nested query result contains no tuples. We illustrate
the use of EXISTS—and NOT EXISTS—with some examples. First, we formulate
Query 16 in an alternative form that uses EXISTS as in Q16B:

Q16B: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E
WHERE EXISTS ( SELECT *

FROM
WHERE

DEPENDENT AS D
E.Ssn = D.Essn AND E.Sex = D.Sex
AND E.Fname = D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested
query. In Q16B, the nested query references the Ssn, Fname, and Sex attributes of
the EMPLOYEE relation from the outer query. We can think of Q16B as follows: For
each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT
tuples with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at
least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE
tuple. EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested
query Q, and returns FALSE otherwise. On the other hand, NOT EXISTS(Q) returns
TRUE if there are no tuples in the result of nested query Q, and returns FALSE other-
wise. Next, we illustrate the use of NOT EXISTS.

Query 6. Retrieve the names of employees who have no dependents.

Qe6: SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS ( SELECT *
FROM DEPENDENT
WHERE Ssn=Essn);

In Q6, the correlated nested query retrieves all DEPENDENT tuples related to a
particular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because
the WHERE-clause condition will evaluate to TRUE in this case. We can explain
Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all
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DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn; if the result is
empty, no dependents are related to the employee, so we select that EMPLOYEE
tuple and retrieve its Fname and Lname.

Query 7. List the names of managers who have at least one dependent.

Q7: SELECT Fname, Lname

FROM EMPLOYEE
WHERE EXISTS ( SELECT *
FROM DEPENDENT
WHERE Ssn=Essn)
AND
EXISTS ( SELECT *

FROM DEPARTMENT
WHERE Ssn = Mgr_ssn );

One way to write this query is shown in Q7, where we specify two nested cor-
related queries; the first selects all DEPENDENT tuples related to an EMPLOYEE,
and the second selects all DEPARTMENT tuples managed by the EMPLOYEE. If at
least one of the first and at least one of the second exists, we select the EMPLOYEE
tuple. Can you rewrite this query using only a single nested query or no nested
queries?

The query Q3: Retrieve the name of each employee who works on all the projects con-
trolled by department number 5 can be written using EXISTS and NOT EXISTS in
SQL systems. We show two ways of specifying this query Q3 in SQL as Q3A and
Q3B. This is an example of certain types of queries that require universal quantifica-
tion, as we will discuss in Section 8.6.7. One way to write this query is to use the
construct (§2 EXCEPT SI) as explained next, and checking whether the result is
empty.! This option is shown as Q3A.

Q3A: SELECT Fname, Lname

FROM EMPLOYEE
WHERE NOT EXISTS ( ( SELECT Pnumber
FROM PROJECT
WHERE Dnum=5)
EXCEPT  (SELECT Pno
FROM WORKS_ON
WHERE Ssn=Essn));

In Q3A, the first subquery (which is not correlated with the outer query) selects all
projects controlled by department 5, and the second subquery (which is corre-
lated) selects all projects that the particular employee being considered works on.
If the set difference of the first subquery result MINUS (EXCEPT) the second sub-
query result is empty, it means that the employee works on all the projects and is
therefore selected.

'Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, for
example, in Oracle.
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The second option is shown as Q3B. Notice that we need two-level nesting in Q3B
and that this formulation is quite a bit more complex than Q3A.

Q3B: SELECT Lname, Fname
FROM EMPLOYEE
WHERE NOTEXISTS (SELECT *
FROM WORKS_ON B
WHERE (B.PnoIN (SELECT Pnumber
FROM PROJECT
WHERE Dnum=5)
AND
NOT EXISTS (SELECT *
FROM WORKS_ON C
WHERE C.Essn=Ssn
AND C.Pno =B.Pno)));

In O3B, the outer nested query selects any WORKS_ON (B) tuples whose Pno is of a
project controlled by department 5, if there is not a WORKS_ON (C) tuple with the
same Pno and the same Ssn as that of the EMPLOYEE tuple under consideration in
the outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of
Q3B matches the following rephrasing of Query 3: Select each employee such that
there does not exist a project controlled by department 5 that the employee does
not work on. It corresponds to the way we will write this query in tuple relation
calculus (see Section 8.6.7).

There is another SQL function, UNIQUE(Q), which returns TRUE if there are no
duplicate tuples in the result of query Q; otherwise, it returns FALSE. This can be
used to test whether the result of a nested query is a set (no duplicates) or a multiset
(duplicates exist).

7.1.5 Explicit Sets and Renaming in SOL

We have seen several queries with a nested query in the WHERE clause. It is also
possible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses in SQL.

Query 17. Retrieve the Social Security numbers of all employees who work on
project numbers 1, 2, or 3.

Q17: SELECT DISTINCT Essn
FROM WORKS_ON
WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query
by adding the qualifier AS followed by the desired new name. Hence, the AS con-
struct can be used to alias both attribute and relation names in general, and it can
be used in appropriate parts of a query. For example, Q8A shows how query Q8
from Section 4.3.2 can be slightly changed to retrieve the last name of each
employee and his or her supervisor while renaming the resulting attribute names
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as Employee_name and Supervisor_name. The new names will appear as column
headers for the query result.

Q8A: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn = S.Ssn;

7.1.6 Joined Tables in SQL and Outer Joins

The concept of a joined table (or joined relation) was incorporated into SQL to
permit users to specify a table resulting from a join operation in the FROM clause of
a query. This construct may be easier to comprehend than mixing together all the
select and join conditions in the WHERE clause. For example, consider query Q1,
which retrieves the name and address of every employee who works for the
‘Research’ department. It may be easier to specify the join of the EMPLOYEE and
DEPARTMENT relations in the WHERE clause, and then to select the desired tuples
and attributes. This can be written in SQL as in Q1A:

Q1A: SELECT Fname, Lname, Address
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
WHERE Dname = ‘Research’;

The FROM clause in Q1A contains a single joined table. The attributes of such a table
are all the attributes of the first table, EMPLOYEE, followed by all the attributes of
the second table, DEPARTMENT. The concept of a joined table also allows the user to
specify different types of join, such as NATURAL JOIN and various types of OUTER
JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an
implicit EQUIJOIN condition for each pair of attributes with the same name from R
and § is created. Each such pair of attributes is included only once in the resulting
relation (see Sections 8.3.2 and 8.4.4 for more details on the various types of join
operations in relational algebra).

If the names of the join attributes are not the same in the base relations, it is possible
to rename the attributes so that they match, and then to apply NATURAL JOIN. In
this case, the AS construct can be used to rename a relation and all its attributes in
the FROM clause. This is illustrated in Q1B, where the DEPARTMENT relation is
renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name
of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The
implied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno,
because this is the only pair of attributes with the same name after renaming:

Q1B: SELECT Fname, Lname, Address
FROM (EMPLOYEE NATURAL JOIN
(DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))
WHERE Dname = ‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is
included in the result only if a matching tuple exists in the other relation. For exam-
ple, in query Q8A, only employees who have a supervisor are included in the result;

215



216 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the user
requires that all employees be included, a different type of join called OUTER JOIN
must be used explicitly (see Section 8.4.4 for the definition of OUTER JOIN in rela-
tional algebra). There are several variations of OUTER JOIN, as we shall see. In the
SQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in a
joined table, as illustrated in Q8B:

Q8B: SELECT E.Lname AS Employee_name,
S.Lname AS Supervisor_name
FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
ON E.Super_ssn = S.Ssn);

In SQL, the options available for specifying joined tables include INNER JOIN (only
pairs of tuples that match the join condition are retrieved, same as JOIN), LEFT
OUTER JOIN (every tuple in the left table must appear in the result; if it does not have
a matching tuple, it is padded with NULL values for the attributes of the right table),
RIGHT OUTER JOIN (every tuple in the right table must appear in the result; if it does
not have a matching tuple, it is padded with NULL values for the attributes of the left
table), and FULL OUTER JOIN. In the latter three options, the keyword OUTER may be
omitted. If the join attributes have the same name, one can also specify the natural
join variation of outer joins by using the keyword NATURAL before the operation (for
example, NATURAL LEFT OUTER JOIN). The keyword CROSS JOIN is used to specify
the CARTESIAN PRODUCT operation (see Section 8.2.2), although this should be
used only with the utmost care because it generates all possible tuple combinations.

It is also possible to nest join specifications; that is, one of the tables in a join may
itself be a joined table. This allows the specification of the join of three or more tables
as a single joined table, which is called a multiway join. For example, Q2A is a differ-
ent way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:

Q2A: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)
JOIN EMPLOYEE ON Mgr_ssn = Ssn)
WHERE Plocation = ‘Stafford’;

Not all SQL implementations have implemented the new syntax of joined tables. In
some systems, a different syntax was used to specify outer joins by using the compari-
son operators + =, = +, and + = + for left, right, and full outer join, respectively, when
specifying the join condition. For example, this syntax is available in Oracle. To specify
the left outer join in Q8B using this syntax, we could write the query Q8C as follows:

Q8cC: SELECT E.Lname, S.Lname
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.Super_ssn + = S.Ssn;

7.1.7 Aggregate Functions in SOL

Aggregate functions are used to summarize information from multiple tuples
into a single-tuple summary. Grouping is used to create subgroups of tuples
before summarization. Grouping and aggregation are required in many database
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applications, and we will introduce their use in SQL through examples. A number
of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG.> The
COUNT function returns the number of tuples or values as specified in a query.
The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of
numeric values and return, respectively, the sum, maximum value, minimum
value, and average (mean) of those values. These functions can be used in the
SELECT clause or in a HAVING clause (which we introduce later). The functions
MAX and MIN can also be used with attributes that have nonnumeric domains if
the domain values have a total ordering among one another.> We illustrate the use
of these functions with several queries.

Query 19. Find the sum of the salaries of all employees, the maximum salary,
the minimum salary, and the average salary.

Q19: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table.
We could use AS to rename the column names in the resulting single-row table; for
example, as in Q19A.

Q19A:  SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal,
MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_Sal
FROM EMPLOYEE;

If we want to get the preceding aggregate function values for employees of a specitfic
department—say, the ‘Research’ department—we can write Query 20, where the
EMPLOYEE tuples are restricted by the WHERE clause to those employees who work
for the ‘Research’ department.

Query 20. Find the sum of the salaries of all employees of the ‘Research’ depart-
ment, as well as the maximum salary, the minimum salary, and the average
salary in this department.

Q.20: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
WHERE Dname = ‘Research’;

Queries 21 and 22. Retrieve the total number of employees in the company
(Q21) and the number of employees in the ‘Research’ department (Q22).

Q21: SELECT COUNT (%)
FROM EMPLOYEE;

Q22: SELECT COUNT (%)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO = DNUMBER AND DNAME = ‘Research’;

2Additional aggregate functions for more advanced statistical calculation were added in SQL-99.

STotal order means that for any two values in the domain, it can be determined that one appears before
the other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderings
on their values, as do alphabetic strings.
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Here the asterisk (*) refers to the rows (tuples), so COUNT (*¥) returns the number of
rows in the result of the query. We may also use the COUNT function to count val-
ues in a column rather than tuples, as in the next example.

Query 23. Count the number of distinct salary values in the database.

Q23: SELECT COUNT (DISTINCT Salary)
FROM EMPLOYEE;

If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23, then
duplicate values will not be eliminated. However, any tuples with NULL for SALARY
will not be counted. In general, NULL values are discarded when aggregate func-
tions are applied to a particular column (attribute); the only exception is for
COUNT(*) because tuples instead of values are counted. In the previous examples,
any Salary values that are NULL are not included in the aggregate function calcula-
tion. The general rule is as follows: when an aggregate function is applied to a col-
lection of values, NULLs are removed from the collection before the calculation; if
the collection becomes empty because all values are NULL, the aggregate function
will return NULL (except in the case of COUNT, where it will return 0 for an empty
collection of values).

The preceding examples summarize a whole relation (Q19, Q21, Q23) or a selected
subset of tuples (Q20, Q22), and hence all produce a table with a single row or a
single value. They illustrate how functions are applied to retrieve a summary value
or summary tuple from a table. These functions can also be used in selection condi-
tions involving nested queries. We can specify a correlated nested query with an
aggregate function, and then use the nested query in the WHERE clause of an outer
query. For example, to retrieve the names of all employees who have two or more
dependents (Query 5), we can write the following:

Q5: SELECT Lname, Fname
FROM EMPLOYEE
WHERE ( SELECT COUNT (¥
FROM DEPENDENT
WHERE Ssn=Essn)>= 2;

The correlated nested query counts the number of dependents that each employee
has; if this is greater than or equal to two, the employee tuple is selected.

SQL also has aggregate functions SOME and ALL that can be applied to a col-
lection of Boolean values; SOME returns TRUE if at least one element in the
collection is TRUE, whereas ALL returns TRUE if all elements in the collection
are TRUE.

7.1.8 Grouping: The GROUP BY and HAVING Clauses

In many cases we want to apply the aggregate functions to subgroups of tuples in a
relation, where the subgroups are based on some attribute values. For example, we
may want to find the average salary of employees in each department or the number
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of employees who work on each project. In these cases we need to partition the rela-
tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) will
consist of the tuples that have the same value of some attribute(s), called the
grouping attribute(s). We can then apply the function to each such group indepen-
dently to produce summary information about each group. SQL has a GROUP BY
clause for this purpose. The GROUP BY clause specifies the grouping attributes,
which should also appear in the SELECT clause, so that the value resulting from
applying each aggregate function to a group of tuples appears along with the value
of the grouping attribute(s).

Query 24. For each department, retrieve the department number, the number
of employees in the department, and their average salary.

Q24: SELECT Dno, COUNT (*), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

In Q24, the EMPLOYEE tuples are partitioned into groups—each group having
the same value for the GROUP BY attribute Dno. Hence, each group contains the
employees who work in the same department. The COUNT and AVG functions
are applied to each such group of tuples. Notice that the SELECT clause includes
only the grouping attribute and the aggregate functions to be applied on each
group of tuples. Figure 7.1(a) illustrates how grouping works and shows the
result of Q24.

If NULLs exist in the grouping attribute, then a separate group is created for all
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE
table had some tuples that had NULL for the grouping attribute Dno, there would be
a separate group for those tuples in the result of Q24.

Query 25. For each project, retrieve the project number, the project name, and
the number of employees who work on that project.

Q25: SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber = Pno
GROUP BY Pnumber, Pname;

Q25 shows how we can use a join condition in conjunction with GROUP BY. In this
case, the grouping and functions are applied after the joining of the two relations in
the WHERE clause.

Sometimes we want to retrieve the values of these functions only for groups that
satisfy certain conditions. For example, suppose that we want to modify Query 25 so
that only projects with more than two employees appear in the result. SQL provides
a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this
purpose. HAVING provides a condition on the summary information regarding the
group of tuples associated with each value of the grouping attributes. Only the
groups that satisfy the condition are retrieved in the result of the query. This is illus-
trated by Query 26.
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Figure 7.1
Results of GROUP BY and HAVING. (a) 024. (b) Q26.

(@) |Fname |Minit | Lname Ssn - | Salary | Super_ssn Dno Dno | Count (*) | Avg (Salary)
John B | Smith | 123456789 30000 | 333445555 | 5 5 4 33250
Frankiin | T | Wong | 333445555 40000 | 888665555 | 5 4 3 31000
Ramesh | K | Narayan | 666884444 38000 | 333445555 | 5 — 1 1 55000
Joyce A English | 4563453453 25000 | 333445555 5 | | Result of Q24
Alicia J Zelaya | 999887777 25000 | 987654321 4 ]

Jennifer S Wallace | 987654321 43000 | 888665555 4

Ahmad Vv Jabbar | 987987987 25000 | 987654321 4

James | E_|Bong | 888665555 | | 55000 | NULL | ]—

Grouping EMPLOYEE tuples by the value of Dno

(b) Pname Pnumber Essn Pno Hours — These groups are h.ot selected by

ProductX 1 193456789 1 395 - the HAVING condition of Q26.
ProductX 1 453453453 1 20.0 | |
ProductY 2 123456789 2 75 ||
ProductY 2 453453453 | 2 20.0
ProductY 2 333445555 2 100 | |
ProductZ 3 666884444 | 3 400 || -
ProductZ 3 333445555 3 100 | |
Computerization 10 333445555 | 10 100 | |
Computerization 10 999887777 | 10 10.0
Computerization 10 987987987 | 10 35.0 | |
Reorganization 20 333445555 | 20 100 ||
Reorganization 20 987654321 | 20 15.0
Reorganization 20 888665555 | 20 NULL |_|
Newbenefits 30 987987987 | 30 50 ||
Newbenefits 30 987654321 | 30 20.0
Newbenefits 30 999887777 | 30 30.0

After applying the WHERE clause but before applying HAVING

Pname Pnumber Essn Pno | Hours Pname Count (*)

ProductY 2 123456789 | 2 75 _l—> ProductY 3
ProductY 2 453453453 | 2 20.0 Computerization 3
ProductY 2 333445555 | 2 10.0 |_| Reorganization 3
Computerization 10 333445555 | 10 10.0 || | Newbenefits 3
Computerization 10 999887777 | 10 10.0 Result of Q26
Computerization 10 087987987 | 10 | 35.0 | | (Pnumber not shown)
Reorganization 20 333445555 | 20 10.0 ||
Reorganization 20 987654321 | 20 15.0
Reorganization 20 888665555 | 20 NULL |_|
Newbenefits 30 987987987 | 30 50 ||
Newbenefits 30 987654321 | 30 20.0 —
Newbenefits 30 999887777 | 30 30.0

After applying the HAVING clause condition
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Query 26. For each project on which more than two employees work, retrieve the
project number, the project name, and the number of employees who work on
the project.

Q26: SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber = Pno
GROUP BY Pnumber, Pname
HAVING COUNT (*) > 2;

Notice that although selection conditions in the WHERE clause limit the tuples to
which functions are applied, the HAVING clause serves to choose whole groups. Fig-
ure 7.1(b) illustrates the use of HAVING and displays the result of Q26.

Query 27. For each project, retrieve the project number, the project name, and
the number of employees from department 5 who work on the project.

Q27: SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE Pnumber = Pno AND Ssn = Essn AND Dno=5
GROUP BY Pnumber, Pname;

In Q27, we restrict the tuples in the relation (and hence the tuples in each group)
to those that satisfy the condition specified in the WHERE clause—namely, that
they work in department number 5. Notice that we must be extra careful when
two different conditions apply (one to the aggregate function in the SELECT
clause and another to the function in the HAVING clause). For example, suppose
that we want to count the total number of employees whose salaries exceed
$40,000 in each department, but only for departments where more than five
employees work. Here, the condition (SALARY > 40000) applies only to the
COUNT function in the SELECT clause. Suppose that we write the following
incorrect query:

SELECT Dno, COUNT (¥
FROM EMPLOYEE
WHERE Salary>40000
GROUP BY Dno

HAVING COUNT (*) > 5;

This is incorrect because it will select only departments that have more than five
employees who each earn more than $40,000. The rule is that the WHERE clause is
executed first, to select individual tuples or joined tuples; the HAVING clause is
applied later, to select individual groups of tuples. In the incorrect query, the tuples
are already restricted to employees who earn more than $40,000 before the function
in the HAVING clause is applied. One way to write this query correctly is to use a
nested query, as shown in Query 28.

Query 28. For each department that has more than five employees, retrieve the
department number and the number of its employees who are making more
than $40,000.
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Q2s: SELECT Dno, COUNT (*)

FROM EMPLOYEE
WHERE Salary>40000 AND Dno IN
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)

GROUP BY Dno;

7.1.9 Other SQL Constructs: WITH and CASE

In this section, we illustrate two additional SQL constructs. The WITH clause
allows a user to define a table that will only be used in a particular query; it is some-
what similar to creating a view (see Section 7.3) that will be used only in one query
and then dropped. This construct was introduced as a convenience in SQL:99 and
may not be available in all SQL based DBMSs. Queries using WITH can generally
be written using other SQL constructs. For example, we can rewrite Q28 as Q28"

Q28" WITH BIGDEPTS (Dno) AS
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)
SELECT Dno, COUNT (¥
FROM EMPLOYEE
WHERE Salary>40000 AND Dno IN BIGDEPTS

GROUP BY Dno;

In Q28’, we defined in the WITH clause a temporary table BIG_DEPTS whose
result holds the Dno’s of departments with more than five employees, then used
this table in the subsequent query. Once this query is executed, the temporary table
BIGDEPTS is discarded.

SQL also has a CASE construct, which can be used when a value can be different
based on certain conditions. This can be used in any part of an SQL query where a
value is expected, including when querying, inserting or updating tuples. We illus-
trate this with an example. Suppose we want to give employees different raise
amounts depending on which department they work for; for example, employees in
department 5 get a $2,000 raise, those in department 4 get $1,500 and those in
department 1 get $3,000 (see Figure 5.6 for the employee tuples). Then we could
re-write the update operation U6 from Section 6.4.3 as U6":

ue”: UPDATE EMPLOYEE
SET Salary =
CASE WHEN Dno=5 THEN Salary + 2000
WHEN Dno=4 THEN Salary + 1500
WHEN Dno=1 THEN Salary + 3000

ELSE Salary + 0;
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In U6’, the salary raise value is determined through the CASE construct based on
the department number for which each employee works. The CASE construct can
also be used when inserting tuples that can have different attributes being NULL
depending on the type of record being inserted into a table, as when a specialization
(see Chapter 4) is mapped into a single table (see Chapter 9) or when a union type
is mapped into relations.

7.1.10 Recursive Queries in SQL

In this section, we illustrate how to write a recursive query in SQL. This syntax was
added in SQL:99 to allow users the capability to specify a recursive query in a
declarative manner. An example of a recursive relationship between tuples of the
same type is the relationship between an employee and a supervisor. This relation-
ship is described by the foreign key Super_ssn of the EMPLOYEE relation in Fig-
ures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee) to
another employee tuple (in the role of supervisor). An example of a recursive oper-
ation is to retrieve all supervisees of a supervisory employee e at all levels—that is,
all employees ¢’ directly supervised by e, all employees e’ directly supervised by each
employee ¢, all employees "’ directly supervised by each employee €”, and so on.
In SQL:99, this query can be written as follows:

Q29: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS
(SELECT SupervisorSsn, Ssn
FROM EMPLOYEE
UNION
SELECT E.Ssn, S.SupSsn
FROM EMPLOYEE AS E, SUP_EMP AS S
WHERE E.SupervisorSsn = S.EmpSsn)
SELECT*
FROM SUP_EMP;

In Q29, we are defining a view SUP_EMP that will hold the result of the recursive
query. The view is initially empty. It is first loaded with the first level (supervisor,
supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM
EMPLOYEE), which is called the base query. This will be combined via UNION
with each successive level of supervisees through the second part, where the view
contents are joined again with the base values to get the second level combinations,
which are UNIONed with the first level. This is repeated with successive levels until
a fixed point is reached, where no more tuples are added to the view. At this point,
the result of the recursive query is in the view SUP_EMP.

7.1.11 Discussion and Summary of SOL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two—
SELECT and FROM—are mandatory. The query can span several lines, and is
ended by a semicolon. Query terms are separated by spaces, and parentheses can
be used to group relevant parts of a query in the standard way. The clauses are
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specified in the following order, with the clauses between square brackets [ ... ]
being optional:

SELECT <attribute and function list>
FROM <table list>

[ WHERE <condition> ]

[ GROUP BY <grouping attribute(s)> |
[ HAVING <group condition> ]

[ ORDER BY <attribute list> 1;

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause
specifies all relations (tables) needed in the query, including joined relations, but
not those in nested queries. The WHERE clause specifies the conditions for selecting
the tuples from these relations, including join conditions if needed. GROUP BY
specifies grouping attributes, whereas HAVING specifies a condition on the groups
being selected rather than on the individual tuples. The built-in aggregate functions
COUNT, SUM, MIN, MAX, and AVG are used in conjunction with grouping, but they
can also be applied to all the selected tuples in a query without a GROUP BY clause.
Finally, ORDER BY specifies an order for displaying the result of a query.

In order to formulate queries correctly, it is useful to consider the steps that define
the meaning or semantics of each query. A query is evaluated conceptually* by first
applying the FROM clause (to identify all tables involved in the query or to materialize
any joined tables), followed by the WHERE clause to select and join tuples, and then by
GROUP BY and HAVING. Conceptually, ORDER BY is applied at the end to sort the query
result. If none of the last three clauses (GROUP BY, HAVING, and ORDER BY) are speci-
fied, we can think conceptually of a query as being executed as follows: For each combi-
nation of tuples—one from each of the relations specified in the FROM clause—evaluate
the WHERE clause; if it evaluates to TRUE, place the values of the attributes specified in
the SELECT clause from this tuple combination in the result of the query. Of course, this
is not an efficient way to implement the query in a real system, and each DBMS has
special query optimization routines to decide on an execution plan that is efficient to
execute. We discuss query processing and optimization in Chapters 18 and 19.

In general, there are numerous ways to specify the same query in SQL. This flexibility
in specifying queries has advantages and disadvantages. The main advantage is that
users can choose the technique with which they are most comfortable when specifying
a query. For example, many queries may be specified with join conditions in the
WHERE clause, or by using joined relations in the FROM clause, or with some form of
nested queries and the IN comparison operator. Some users may be more comfortable
with one approach, whereas others may be more comfortable with another. From the
programmer’s and the system’s point of view regarding query optimization, it is gener-
ally preferable to write a query with as little nesting and implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that
this may confuse the user, who may not know which technique to use to specify

“The actual order of query evaluation is implementation dependent; this is just a way to conceptually
view a query in order to correctly formulate it.
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particular types of queries. Another problem is that it may be more efficient to
execute a query specified in one way than the same query specified in an alterna-
tive way. Ideally, this should not be the case: The DBMS should process the same
query in the same way regardless of how the query is specified. But this is quite
difficult in practice, since each DBMS has different methods for processing queries
specified in different ways. Thus, an additional burden on the user is to determine
which of the alternative specifications is the most efficient to execute. Ideally, the
user should worry only about specifying the query correctly, whereas the DBMS
would determine how to execute the query efficiently. In practice, however, it
helps if the user is aware of which types of constructs in a query are more expen-
sive to process than others.

7.2 Specifying Constraints as Assertions
and Actions as Triggers

In this section, we introduce two additional features of SQL: the CREATE ASSERTION
statement and the CREATE TRIGGER statement. Section 7.2.1 discusses CREATE
ASSERTION, which can be used to specify additional types of constraints that are
outside the scope of the built-in relational model constraints (primary and unique
keys, entity integrity, and referential integrity) that we presented in Section 5.2.
These built-in constraints can be specified within the CREATE TABLE statement of
SQL (see Sections 6.1 and 6.2).

In Section 7.2.2 we introduce CREATE TRIGGER, which can be used to specify auto-
matic actions that the database system will perform when certain events and condi-
tions occur. This type of functionality is generally referred to as active databases.
We only introduce the basics of triggers in this chapter, and present a more com-
plete discussion of active databases in Section 26.1.

7.2.1 Specifying General Constraints as Assertions in SOL

In SQL, users can specify general constraints—those that do not fall into any of the
categories described in Sections 6.1 and 6.2— via declarative assertions, using the
CREATE ASSERTION statement. Each assertion is given a constraint name and is
specified via a condition similar to the WHERE clause of an SQL query. For exam-
ple, to specify the constraint that the salary of an employee must not be greater than
the salary of the manager of the department that the employee works for in SQL, we
can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS (SELECT *
FROM EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D
WHERE E.Salary>M.Salary
AND E.Dno = D.Dnumber
AND D.Mgr_ssn=M.Ssn) );
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The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK,
which is followed by a condition in parentheses that must hold true on every data-
base state for the assertion to be satisfied. The constraint name can be used later to
disable the constraint or to modify or drop it. The DBMS is responsible for ensur-
ing that the condition is not violated. Any WHERE clause condition can be used,
but many constraints can be specified using the EXISTS and NOT EXISTS style of
SQL conditions. Whenever some tuples in the database cause the condition of an
ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-
straint is satisfied by a database state if no combination of tuples in that database
state violates the constraint.

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT EXISTS
clause, the assertion will specify that the result of this query must be empty so that
the condition will always be TRUE. Thus, the assertion is violated if the result of the
query is not empty. In the preceding example, the query selects all employees whose
salaries are greater than the salary of the manager of their department. If the result
of the query is not empty, the assertion is violated.

Note that the CHECK clause and constraint condition can also be used to specify
constraints on individual attributes and domains (see Section 6.2.1) and on indi-
vidual tuples (see Section 6.2.4). A major difference between CREATE
ASSERTION and the individual domain constraints and tuple constraints is that
the CHECK clauses on individual attributes, domains, and tuples are checked in
SQL only when tuples are inserted or updated in a specific table. Hence, con-
straint checking can be implemented more efficiently by the DBMS in these
cases. The schema designer should use CHECK on attributes, domains, and tuples
only when he or she is sure that the constraint can only be violated by insertion or
updating of tuples. On the other hand, the schema designer should use CREATE
ASSERTION only in cases where it is not possible to use CHECK on attributes,
domains, or tuples, so that simple checks are implemented more efficiently by
the DBMS.

7.2.2 Introduction to Triggers in SQL

Another important statement in SQL is CREATE TRIGGER. In many cases it is con-
venient to specify the type of action to be taken when certain events occur and
when certain conditions are satisfied. For example, it may be useful to specify a
condition that, if violated, causes some user to be informed of the violation. A man-
ager may want to be informed if an employee’s travel expenses exceed a certain
limit by receiving a message whenever this occurs. The action that the DBMS must
take in this case is to send an appropriate message to that user. The condition is
thus used to monitor the database. Other actions may be specified, such as execut-
ing a specific stored procedure or triggering other updates. The CREATE TRIGGER
statement is used to implement such actions in SQL. We discuss triggers in detail in
Section 26.1 when we describe active databases. Here we just give a simple example
of how triggers may be used.
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Suppose we want to check whenever an employee’s salary is greater than the salary
of his or her direct supervisor in the COMPANY database (see Figures 5.5 and 5.6).
Several events can trigger this rule: inserting a new employee record, changing an
employee’s salary, or changing an employee’s supervisor. Suppose that the action to
take would be to call an external stored procedure SALARY_VIOLATION,” which will
notify the supervisor. The trigger could then be written as in R5 below. Here we are
using the syntax of the Oracle database system.

R5: CREATE TRIGGER SALARY_VIOLATION
BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
ON EMPLOYEE
FOR EACH ROW
WHEN ( NEW.SALARY > ( SELECT SALARY FROM EMPLOYEE
WHERE SSN = NEW.SUPERVISOR_SSN ) )
INFORM_SUPERVISOR(NEW.Supervisor_ssn,
NEW.Ssn);

The trigger is given the name SALARY_VIOLATION, which can be used to remove or
deactivate the trigger later. A typical trigger which is regarded as an ECA (Event,
Condition, Action) rule has three components:

1. The event(s): These are usually database update operations that are explic-
itly applied to the database. In this example the events are: inserting a new
employee record, changing an employee’s salary, or changing an employee’s
supervisor. The person who writes the trigger must make sure that all pos-
sible events are accounted for. In some cases, it may be necessary to write
more than one trigger to cover all possible cases. These events are specified
after the keyword BEFORE in our example, which means that the trigger
should be executed before the triggering operation is executed. An alterna-
tive is to use the keyword AFTER, which specifies that the trigger should be
executed after the operation specified in the event is completed.

2. The condition that determines whether the rule action should be executed:
Once the triggering event has occurred, an optional condition may be evalu-
ated. If no condition is specified, the action will be executed once the event
occurs. If a condition is specified, it is first evaluated, and only if it evaluates
to true will the rule action be executed. The condition is specified in the
WHEN clause of the trigger.

3. The action to be taken: The action is usually a sequence of SQL statements,
but it could also be a database transaction or an external program that will
be automatically executed. In this example, the action is to execute the stored
procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consis-
tency, monitoring database updates, and updating derived data automatically. A
complete discussion is given in Section 26.1.

SAssuming that an appropriate external procedure has been declared. We discuss stored procedures in
Chapter 10.
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7.3 Views (Virtual Tables) in SQL

In this section we introduce the concept of a view in SQL. We show how views are
specified, and then we discuss the problem of updating views and how views can be
implemented by the DBMS.

7.3.1 Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables.® These
other tables can be base tables or previously defined views. A view does not neces-
sarily exist in physical form; it is considered to be a virtual table, in contrast to base
tables, whose tuples are always physically stored in the database. This limits the
possible update operations that can be applied to views, but it does not provide any
limitations on querying a view.

We can think of a view as a way of specifying a table that we need to reference
frequently, even though it may not exist physically. For example, referring to the
COMPANY database in Figure 5.5, we may frequently issue queries that retrieve the
employee name and the project names that the employee works on. Rather than
having to specify the join of the three tables EMPLOYEE, WORKS_ON, and PROJECT
every time we issue this query, we can define a view that is specified as the result of
these joins. Then we can issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three tables. We call
the EMPLOYEE, WORKS_ON, and PROJECT tables the defining tables of the view.

7.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (vir-
tual) table name (or view name), a list of attribute names, and a query to specify the
contents of the view. If none of the view attributes results from applying functions
or arithmetic operations, we do not have to specify new attribute names for the
view, since they would be the same as the names of the attributes of the defining
tables in the default case. The views in V1 and V2 create virtual tables whose sche-
mas are illustrated in Figure 7.2 when applied to the database schema of Figure 5.5.

V1. CREATE VIEW WORKS_ON1

AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn = Essn AND Pno = Pnumber;
V2: CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal)
AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber = Dno

GROUP BY Dname;

6As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2,
since a user view would possibly include many relations.
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WORKS_ON1
| Fname | Lname | Pname | Hours |
Figure 7.2
DEPT_INFO Two views specified on
the database schema of
| Dept_name | No_of_emps | Total_sal | Figure 5.5.

In V1, we did not specify any new attribute names for the view WORKS_ON1
(although we could have); in this case, WORKS_ON1 inherits the names of the
view attributes from the defining tables EMPLOYEE, PROJECT, and WORKS_ON.
View V2 explicitly specifies new attribute names for the view DEPT_INFO, using
a one-to-one correspondence between the attributes specified in the CREATE
VIEW clause and those specified in the SELECT clause of the query that defines
the view.

We can now specify SQL queries on a view—or virtual table—in the same way we
specify queries involving base tables. For example, to retrieve the last name and first
name of all employees who work on the ‘ProductX’ project, we can utilize the
WORKS_ON1 view and specify the query as in QV1:

QVvi: SELECT Fname, Lname
FROM WORKS_ONT1
WHERE Pname = ‘ProductX’;

The same query would require the specification of two joins if specified on the base
relations directly; one of the main advantages of a view is to simplify the specifica-
tion of certain queries. Views are also used as a security and authorization mecha-
nism (see Section 7.3.4 and Chapter 30).

A view is supposed to be always up-to-date; if we modify the tuples in the base
tables on which the view is defined, the view must automatically reflect these
changes. Hence, the view does not have to be realized or materialized at the time of
view definition but rather at the time when we specify a query on the view. It is the
responsibility of the DBMS and not the user to make sure that the view is kept up-
to-date. We will discuss various ways the DBMS can utilize to keep a view up-to-
date in the next subsection.

If we do not need a view anymore, we can use the DROP VIEW command to dispose
of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

V1A: DROP VIEW WORKS_ONT;

7.3.3 View Implementation, View Update, and Inline Views

The problem of how a DBMS can efficiently implement a view for efficient querying
is complex. Two main approaches have been suggested. One strategy, called query
modification, involves modifying or transforming the view query (submitted by the
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user) into a query on the underlying base tables. For example, the query Qv1 would
be automatically modified to the following query by the DBMS:

SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn = Essn AND Pno = Pnumber
AND Pname = ‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via com-
plex queries that are time-consuming to execute, especially if multiple view queries
are going to be applied to the same view within a short period of time. The second
strategy, called view materialization, involves physically creating a temporary or
permanent view table when the view is first queried or created and keeping that
table on the assumption that other queries on the view will follow. In this case, an
efficient strategy for automatically updating the view table when the base tables are
updated must be developed in order to keep the view up-to-date. Techniques using
the concept of incremental update have been developed for this purpose, where
the DBMS can determine what new tuples must be inserted, deleted, or modified in
a materialized view table when a database update is applied to one of the defining
base tables. The view is generally kept as a materialized (physically stored) table as
long as it is being queried. If the view is not queried for a certain period of time, the
system may then automatically remove the physical table and recompute it from
scratch when future queries reference the view.

Different strategies as to when a materialized view is updated are possible. The
immediate update strategy updates a view as soon as the base tables are changed;
the lazy update strategy updates the view when needed by a view query; and the
periodic update strategy updates the view periodically (in the latter strategy, a view
query may get a result that is not up-to-date).

A user can always issue a retrieval query against any view. However, issuing an
INSERT, DELETE, or UPDATE command on a view table is in many cases not pos-
sible. In general, an update on a view defined on a single table without any aggregate
functions can be mapped to an update on the underlying base table under certain
conditions. For a view involving joins, an update operation may be mapped to
update operations on the underlying base relations in multiple ways. Hence, it is
often not possible for the DBMS to determine which of the updates is intended. To
illustrate potential problems with updating a view defined on multiple tables, con-
sider the WORKS_ON1 view, and suppose that we issue the command to update the
PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is
shown in UV1:

uvi: UPDATE WORKS_ONT1
SET Pname = ‘ProductY’
WHERE Lname = ‘Smith’ AND Fname = ‘John’
AND Pname = ‘ProductX’;

This query can be mapped into several updates on the base relations to give the
desired update effect on the view. In addition, some of these updates will create
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additional side effects that affect the result of other queries. For example, here are
two possible updates, (a) and (b), on the base relations corresponding to the view
update operation in UV1:

(@): UPDATE WORKS_ON
SET Pno = ( SELECT Pnumber
FROM PROJECT
WHERE Pname = ‘ProductY’)
WHERE Essn IN ( SELECT Ssn
FROM EMPLOYEE
WHERE Lname = ‘Smith’ AND Fname = John’)

AND
Pno = (SELECT Pnumber
FROM PROJECT
WHERE Pname = ‘ProductX’ );
(b): UPDATE PROJECT SET Pname = ‘ProductY’

WHERE Pname = ‘ProductX’;

Update (a) relates John Smith’ to the ‘ProductY’ PROJECT tuple instead of the
‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b) would
also give the desired update effect on the view, but it accomplishes this by changing
the name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’. It is quite
unlikely that the user who specified the view update UV1 wants the update to be
interpreted as in (b), since it also has the side effect of changing all the view tuples
with Pname = ‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal
attribute of the DEPT_INFO view does not make sense because Total_sal is defined to be
the sum of the individual employee salaries. This incorrect request is shown as UV2:

uva: UPDATE DEPT_INFO
SET Total_sal = 100000
WHERE Dname = ‘Research’;

Generally, a view update is feasible when only one possible update on the base rela-
tions can accomplish the desired update operation on the view. Whenever an
update on the view can be mapped to more than one update on the underlying base
relations, it is usually not permitted. Some researchers have suggested that the
DBMS have a certain procedure for choosing one of the possible updates as the
most likely one. Some researchers have developed methods for choosing the most
likely update, whereas other researchers prefer to have the user choose the desired
update mapping during view definition. But these options are generally not avail-
able in most commercial DBMSs.

In summary, we can make the following observations:

= A view with a single defining table is updatable if the view attributes contain
the primary key of the base relation, as well as all attributes with the NOT
NULL constraint that do not have default values specified.
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B Views defined on multiple tables using joins are generally not updatable.
B Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION should be added at the end of the view
definition if a view is to be updated by INSERT, DELETE, or UPDATE statements.
This allows the system to reject operations that violate the SQL rules for view
updates. The full set of SQL rules for when a view may be modified by the user are
more complex than the rules stated earlier.

It is also possible to define a view table in the FROM clause of an SQL query. This is
known as an in-line view. In this case, the view is defined within the query itself.

7.3.4 Views as Authorization Mechanisms

We describe SQL query authorization statements (GRANT and REVOKE) in detail
in Chapter 30, when we present database security and authorization mechanisms.
Here, we will just give a couple of simple examples to illustrate how views can be
used to hide certain attributes or tuples from unauthorized users. Suppose a certain
user is only allowed to see employee information for employees who work for
department 5; then we can create the following view DEPT5EMP and grant the user
the privilege to query the view but not the base table EMPLOYEE itself. This user
will only be able to retrieve employee information for employee tuples whose
Dno =5, and will not be able to see other employee tuples when the view is queried.

CREATE VIEW DEPT5EMP AS

SELECT *
FROM EMPLOYEE
WHERE Dno =5;

In a similar manner, a view can restrict a user to only see certain columns; for
example, only the first name, last name, and address of an employee may be visible
as follows:

CREATE VIEW BASIC_EMP_DATA AS
SELECT Fname, Lname, Address
FROM EMPLOYEE;

Thus by creating an appropriate view and granting certain users access to the view
and not the base tables, they would be restricted to retrieving only the data specified
in the view. Chapter 30 discusses security and authorization in detail, including the
GRANT and REVOKE statements of SQL.

7.4 Schema Change Statements in SQL

In this section, we give an overview of the schema evolution commands available
in SQL, which can be used to alter a schema by adding or dropping tables, attri-
butes, constraints, and other schema elements. This can be done while the database
is operational and does not require recompilation of the database schema. Certain
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checks must be done by the DBMS to ensure that the changes do not affect the rest
of the database and make it inconsistent.

7.41 The DROP Command

The DROP command can be used to drop named schema elements, such as tables,
domains, types, or constraints. One can also drop a whole schema if it is no longer
needed by using the DROP SCHEMA command. There are two drop behavior
options: CASCADE and RESTRICT. For example, to remove the COMPANY database
schema and all its tables, domains, and other elements, the CASCADE option is used
as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only
if it has no elements in it; otherwise, the DROP command will not be executed. To
use the RESTRICT option, the user must first individually drop each element in the
schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition
can be deleted by using the DROP TABLE command. For example, if we no longer
wish to keep track of dependents of employees in the COMPANY database of Fig-
ure 6.1, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is
not referenced in any constraints (for example, by foreign key definitions in another
relation) or views (see Section 7.3) or by any other elements. With the CASCADE
option, all such constraints, views, and other elements that reference the table being
dropped are also dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table
if successful, but also removes the table definition from the catalog. If it is desired to
delete only the records but to leave the table definition for future use, then the
DELETE command (see Section 6.4.2) should be used instead of DROP TABLE.

The DROP command can also be used to drop other types of named schema ele-
ments, such as constraints or domains.

7.4.2 The ALTER Command

The definition of a base table or of other named schema elements can be changed
by using the ALTER command. For base tables, the possible alter table actions
include adding or dropping a column (attribute), changing a column definition,
and adding or dropping table constraints. For example, to add an attribute for
keeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY
schema (see Figure 6.1), we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);
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We must still enter a value for the new attribute Job for each individual EMPLOYEE
tuple. This can be done either by specifying a default clause or by using the UPDATE
command individually on each tuple (see Section 6.4.3). If no default clause is speci-
fied, the new attribute will have NULLs in all the tuples of the relation immediately after
the command is executed; hence, the NOT NULL constraint is not allowed in this case.

To drop a column, we must choose either CASCADE or RESTRICT for drop behav-
ior. If CASCADE is chosen, all constraints and views that reference the column are
dropped automatically from the schema, along with the column. If RESTRICT is
chosen, the command is successful only if no views or constraints (or other schema
elements) reference the column. For example, the following command removes the
attribute Address from the EMPLOYEE base table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause
or by defining a new default clause. The following examples illustrate this clause:

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn
SET DEFAULT ‘333445555’;

One can also change the constraints specified on a table by adding or dropping a
named constraint. To be dropped, a constraint must have been given a name when
it was specified. For example, to drop the constraint named EMPSUPERFK in Fig-
ure 6.2 from the EMPLOYEE relation, we write:

ALTER TABLE COMPANY.EMPLOYEE
DROP CONSTRAINT EMPSUPERFK CASCADE;

Once this is done, we can redefine a replacement constraint by adding a new con-
straint to the relation, if needed. This is specified by using the ADD CONSTRAINT
keyword in the ALTER TABLE statement followed by the new constraint, which can
be named or unnamed and can be of any of the table constraint types discussed.

The preceding subsections gave an overview of the schema evolution commands of
SQL. It is also possible to create new tables and views within a database schema
using the appropriate commands. There are many other details and options; we
refer the interested reader to the SQL documents listed in the Selected Bibliography
at the end of this chapter.

7.5 Summary

In this chapter we presented additional features of the SQL database language. We
started in Section 7.1 by presenting more complex features of SQL retrieval queries,
including nested queries, joined tables, outer joins, aggregate functions, and group-
ing. In Section 7.2, we described the CREATE ASSERTION statement, which allows
the specification of more general constraints on the database, and introduced the
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concept of triggers and the CREATE TRIGGER statement. Then, in Section 7.3, we
described the SQL facility for defining views on the database. Views are also called
virtual or derived tables because they present the user with what appear to be tables;
however, the information in those tables is derived from previously defined tables.
Section 7.4 introduced the SQL ALTER TABLE statement, which is used for modify-
ing the database tables and constraints.

Table 7.2 summarizes the syntax (or structure) of various SQL statements. This
summary is not meant to be comprehensive or to describe every possible SQL
construct; rather, it is meant to serve as a quick reference to the major types of
constructs available in SQL. We use BNF notation, where nonterminal symbols

Table 7.2 Summary of SQL Syntax
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CREATE TABLE <table name> ( <column name> <column type> [ <attribute constraint>]
{, <column name> <column type> [ <attribute constraint>] }
[ <table constraint> { , <table constraint>}1])

DROP TABLE <table name>
ALTER TABLE <table name> ADD <column name> <column type>

SELECT [ DISTINCT ] <attribute list>

FROM ( <table name> { <alias>} | <joined table>) {, ( <table name> { <alias> } | <joined table>) }
[ WHERE <condition> ]

[ GROUP BY <grouping attributes> [ HAVING <group selection condition>1] 1]

[ ORDER BY <column name> [ <order>1] { , <column name> [ <order>1] } ]

<attribute list> ::= (* | ( <column name> | <function> ( ( [ DISTINCT ] <column name>|*)))
{, (<column name> | <function> ( ( [ DISTINCT] <column name>|*)) }))

<grouping attributes> ::= <column name> {, <column name> }

<order>::=( ASC | DESC)

INSERT INTO <table name> [ ( <column name> { , <column name>}) ]
( VALUES ( <constant value>, { <constant value>}) {, ( <constant value> { , <constant value>}) }
| <select statement>)

DELETE FROM <table name>
[ WHERE <selection condition> ]

UPDATE <table name>
SET <column name> = <value expression> { , <column name> = <value expression> }
[ WHERE <selection condition> ]

CREATE [ UNIQUE] INDEX <index name>
ON <table name> ( <column name> [ <order>1] {, <column name> [ <order>1]1})
[ CLUSTER]

DROP INDEX <index name>

CREATE VIEW <view name> [ ( <column name> {, <column name>}) ]
AS <select statement>

DROP VIEW <view name>

NOTE: The commands for creating and dropping indexes are not part of standard SQL.
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are shown in angled brackets < ... >, optional parts are shown in square brac-
kets [ ... ], repetitions are shown in braces { ... }, and alternatives are shown in
parentheses (... |...|...).

Review Questions

7.1.

7.2,

7.3.

7.4.

Describe the six clauses in the syntax of an SQL retrieval query. Show what
type of constructs can be specified in each of the six clauses. Which of the six
clauses are required and which are optional?

Describe conceptually how an SQL retrieval query will be executed by speci-
fying the conceptual order of executing each of the six clauses.

Discuss how NULLs are treated in comparison operators in SQL. How are
NULLs treated when aggregate functions are applied in an SQL query? How
are NULLs treated if they exist in grouping attributes?

Discuss how each of the following constructs is used in SQL, and discuss
the various options for each construct. Specify what each construct is
useful for.

Nested queries

Joined tables and outer joins

Aggregate functions and grouping

Triggers

Assertions and how they differ from triggers
The SQL WITH clause

SQL CASE construct

Views and their updatability

=~ 0o a0 T P

J @

i. Schema change commands

Exercises

7.5.

Specify the following queries on the database in Figure 5.5 in SQL. Show the
query results if each query is applied to the database state in Figure 5.6.

a. For each department whose average employee salary is more than
$30,000, retrieve the department name and the number of employees
working for that department.

b. Suppose that we want the number of male employees in each department
making more than $30,000, rather than all employees (as in Exer-
cise 7.5a). Can we specify this query in SQL? Why or why not?

"The full syntax of SQL is described in many voluminous documents of hundreds of pages.



7.6. Specity the following queries in SQL on the database schema in Figure 1.2.

7.7.

7.8.

7.9.

a.

Retrieve the names and major departments of all straight-A students
(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not

have a grade of A in any of their courses.

In SQL, specify the following queries on the database in Figure 5.5 using the
concept of nested queries and other concepts described in this chapter.

a.

Retrieve the names of all employees who work in the department that has
the employee with the highest salary among all employees.

Retrieve the names of all employees whose supervisor’s supervisor has
‘888665555’ for Ssn.

. Retrieve the names of employees who make at least $10,000 more than

the employee who is paid the least in the company.

Specify the following views in SQL on the COMPANY database schema
shown in Figure 5.5.

a.

A view that has the department name, manager name, and manager sal-
ary for every department

A view that has the employee name, supervisor name, and employee sal-
ary for each employee who works in the ‘Research’” department

A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project

A view that has the project name, controlling department name, number
of employees, and total hours worked per week on the project for each
project with more than one employee working on it

Consider the following view, DEPT_SUMMARY, defined on the COMPANY
database in Figure 5.6:

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s)

AS SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

State which of the following queries and updates would be allowed on the
view. If a query or update would be allowed, show what the correspond-
ing query or update on the base relations would look like, and give its
result when applied to the database in Figure 5.6.

SELECT *

FROM DEPT_SUMMARY;
SELECT D, C

FROM DEPT_SUMMARY

WHERE TOTAL_S > 1000005

Exercises

237



238

Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

c. SELECT D, AVERAGE_S
FROM DEPT_SUMMARY
WHERE C > ( SELECT C FROM DEPT_SUMMARY WHERE D = 4);

d. UPDATE DEPT_SUMMARY
SET D=3
WHERE D=4;

e. DELETE FROM DEPT_SUMMARY
WHERE C>4;

Selected Bibliography

Reisner (1977) describes a human factors evaluation of SEQUEL, a precursor of
SQL, in which she found that users have some difficulty with specifying join condi-
tions and grouping correctly. Date (1984) contains a critique of the SQL language
that points out its strengths and shortcomings. Date and Darwen (1993) describes
SQL2. ANSI (1986) outlines the original SQL standard. Various vendor manuals
describe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle,
INGRES, Informix, and other commercial DBMS products. Melton and Simon
(1993) give a comprehensive treatment of the ANSI 1992 standard called SQL2.
Horowitz (1992) discusses some of the problems related to referential integrity and
propagation of updates in SQL2.

The question of view updates is addressed by Dayal and Bernstein (1978), Keller
(1982), and Langerak (1990), among others. View implementation is discussed in
Blakeley et al. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

There are many books that describe various aspects of SQL. For example, two refer-
ences that describe SQL-99 are Melton and Simon (2002) and Melton (2003). Fur-
ther SQL standards—SQL 2006 and SQL 2008—are described in a variety of
technical reports; but no standard references exist.
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The Relational Algebra and
Relational Calculus

n this chapter we discuss the two formal languages for

the relational model: the relational algebra and the
relational calculus. In contrast, Chapters 6 and 7 described the practical language
for the relational model, namely the SQL standard. Historically, the relational alge-
bra and calculus were developed before the SQL language. SQL is primarily based
on concepts from relational calculus and has been extended to incorporate some
concepts from relational algebra as well. Because most relational DBMSs use SQL
as their language, we presented the SQL language first.

Recall from Chapter 2 that a data model must include a set of operations to
manipulate the database, in addition to the data model’s concepts for defining the
database’s structure and constraints. We presented the structures and constraints
of the formal relational model in Chapter 5. The basic set of operations for the
formal relational model is the relational algebra. These operations enable a user
to specify basic retrieval requests as relational algebra expressions. The result of a
retrieval query is a new relation. The algebra operations thus produce new rela-
tions, which can be further manipulated using operations of the same algebra. A
sequence of relational algebra operations forms a relational algebra expression,
whose result will also be a relation that represents the result of a database query
(or retrieval request).

The relational algebra is very important for several reasons. First, it provides a
formal foundation for relational model operations. Second, and perhaps more
important, it is used as a basis for implementing and optimizing queries in the
query processing and optimization modules that are integral parts of relational
database management systems (RDBMSs), as we shall discuss in Chapters 18
and 19. Third, some of its concepts are incorporated into the SQL standard
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query language for RDBMSs. Although most commercial RDBMSs in use today
do not provide user interfaces for relational algebra queries, the core operations
and functions in the internal modules of most relational systems are based on
relational algebra operations. We will define these operations in detail in Sec-
tions 8.1 through 8.4 of this chapter.

Whereas the algebra defines a set of operations for the relational model, the
relational calculus provides a higher-level declarative language for specifying rela-
tional queries. In a relational calculus expression, there is no order of operations to
specify how to retrieve the query result—only what information the result should
contain. This is the main distinguishing feature between relational algebra and rela-
tional calculus. The relational calculus is important because it has a firm basis in
mathematical logic and because the standard query language (SQL) for RDBMSs
has some of its foundations in a variation of relational calculus known as the tuple
relational calculus.!

The relational algebra is often considered to be an integral part of the relational data
model. Its operations can be divided into two groups. One group includes set oper-
ations from mathematical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model (see Section 5.1). Set
operations include UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN
PRODUCT (also known as CROSS PRODUCT). The other group consists of opera-
tions developed specifically for relational databases—these include SELECT,
PROJECT, and JOIN, among others. First, we describe the SELECT and PROJECT
operations in Section 8.1 because they are unary operations that operate on single
relations. Then we discuss set operations in Section 8.2. In Section 8.3, we discuss
JOIN and other complex binary operations, which operate on two tables by com-
bining related tuples (records) based on join conditions. The COMPANY relational
database shown in Figure 5.6 is used for our examples.

Some common database requests cannot be performed with the original relational
algebra operations, so additional operations were created to express these requests.
These include aggregate functions, which are operations that can summarize data
from the tables, as well as additional types of JOIN and UNION operations, known as
OUTER JOINs and OUTER UNIONs. These operations, which were added to the origi-
nal relational algebra because of their importance to many database applications,
are described in Section 8.4. We give examples of specifying queries that use rela-
tional operations in Section 8.5. Some of these same queries were used in Chap-
ters 6 and 7. By using the same query numbers in this chapter, the reader can contrast
how the same queries are written in the various query languages.

In Sections 8.6 and 8.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus.
The tuple relational calculus is described in Section 8.6 and the domain relational
calculus is described in Section 8.7. Some of the SQL constructs discussed in

'SQL is based on tuple relational calculus, but also incorporates some of the operations from the
relational algebra and its extensions, as illustrated in Chapters 6, 7, and 9.
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Chapters 6 and 7 are based on the tuple relational calculus. The relational calculus
is a formal language, based on the branch of mathematical logic called predicate
calculus.? In tuple relational calculus, variables range over tuples, whereas in
domain relational calculus, variables range over the domains (values) of attributes.
In Appendix C we give an overview of the Query-By-Example (QBE) language,
which is a graphical user-friendly relational language based on domain relational
calculus. Section 8.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational
languages, Sections 8.4, 8.6, and 8.7 may be skipped.

8.1 Unary Relational Operations:
SELECT and PROJECT

8.1.1 The SELECT Operation

The SELECT operation is used to choose a subset of the tuples from a relation that
satisfies a selection condition.> We can consider the SELECT operation to be a filter
that keeps only those tuples that satisfy a qualifying condition. Alternatively, we can
consider the SELECT operation to restrict the tuples in a relation to only those tuples
that satisfy the condition. The SELECT operation can also be visualized as a horizon-
tal partition of the relation into two sets of tuples—those tuples that satisfy the con-
dition and are selected, and those tuples that do not satisfy the condition and are
filtered out. For example, to select the EMPLOYEE tuples whose department is 4, or
those whose salary is greater than $30,000, we can individually specify each of these
two conditions with a SELECT operation as follows:

Opno=4(EMPLOYEE)
OSalary>30000(EMPLOYEE)

In general, the SELECT operation is denoted by

G <selection condition>(R)

where the symbol ¢ (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression (condition) specified on the attributes of
relation R. Notice that R is generally a relational algebra expression whose result is a
relation—the simplest such expression is just the name of a database relation. The
relation resulting from the SELECT operation has the same attributes as R.

The Boolean expression specified in <selection condition> is made up of a number
of clauses of the form

<attribute name> <comparison op> <constant value>

?In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables
and values—is assumed.

The SELECT operation is different from the SELECT clause of SQL. The SELECT operation chooses
tuples from a table, and is sometimes called a RESTRICT or FILTER operation.
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or
<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, <, >, 2, #}, and <constant value> is a constant
value from the attribute domain. Clauses can be connected by the standard Boolean
operators and, or, and not to form a general selection condition. For example, to
select the tuples for all employees who either work in department 4 and make over
$25,000 per year, or work in department 5 and make over $30,000, we can specify
the following SELECT operation:

G(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result is shown in Figure 8.1(a).

Notice that all the comparison operators in the set {=, <, <, >, 2, #} can apply to
attributes whose domains are ordered values, such as numeric or date domains.
Domains of strings of characters are also considered to be ordered based on the col-
lating sequence of the characters. If the domain of an attribute is a set of unordered
values, then only the comparison operators in the set {=, #} can be used. An exam-
ple of an unordered domain is the domain Color = { ‘red’, ‘blue’, ‘green’, ‘white’,
‘yellow’, ...}, where no order is specified among the various colors. Some domains
allow additional types of comparison operators; for example, a domain of character
strings may allow the comparison operator SUBSTRING_OF.

Figure 8.1

Results of SELECT and PROJECT operations. (a) O(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE)
(b) T name, Fname, Salary(EMPLOYEE)- (© TSex, Salary(EMPLOYEE)-

€))

Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 | 888665555 | 5
Jennifer S Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F | 43000 (888665555
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M | 38000 |333445555 | 5
(b) (©

Lname Fname Salary Sex | Salary

Smith John 30000 M | 30000

Wong Franklin | 40000 M | 40000

Zelaya Alicia 25000 F 25000

Wallace | Jennifer | 43000 F 43000

Narayan | Ramesh | 38000 M | 38000

English | Joyce 25000 M | 25000

Jabbar Ahmad 25000 M | 55000

Borg James 55000
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In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each individual tuple t in R. This
is done by substituting each occurrence of an attribute A; in the selection condition
with its value in the tuple t[A;]. If the condition evaluates to TRUE, then tuple f is
selected. All the selected tuples appear in the result of the SELECT operation. The
Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

® (condl AND cond2) is TRUE if both (condl) and (cond2) are TRUE; other-
wise, it is FALSE.

® (condl OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE;
otherwise, it is FALSE.

® (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover,
the selection operation is applied to each tuple individually; hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting from
a SELECT operation—its number of attributes—is the same as the degree of R. The
number of tuples in the resulting relation is always less than or equal to the number
of tuples in R. That is, |6c (R)| < |R| for any condition C. The fraction of tuples
selected by a selection condition is referred to as the selectivity of the condition.

Notice that the SELECT operation is commutative; that is,

G <condt >(G<cond2>(R)) = G<cond2>(0<cond1 >(R))

Hence, a sequence of SELECTs can be applied in any order. In addition, we can
always combine a cascade (or sequence) of SELECT operations into a single SELECT
operation with a conjunctive (AND) condition; that is,

G<cond1>(0<cond2>(--- (6<condn>(R)) )) = O<cond1> AND<cond2> AND...AND <condn>(R)

In SQL, the SELECT condition is typically specified in the WHERE clause of a query.
For example, the following operation:

GODno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *
FROM EMPLOYEE
WHERE Dno=4 AND Salary>25000;

8.1.2 The PROJECT Operation

If we think of a relation as a table, the SELECT operation chooses some of the rows
from the table while discarding other rows. The PROJECT operation, on the other
hand, selects certain columns from the table and discards the other columns. If we
are interested in only certain attributes of a relation, we use the PROJECT operation
to project the relation over these attributes only. Therefore, the result of the PROJECT
operation can be visualized as a vertical partition of the relation into two relations:
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one has the needed columns (attributes) and contains the result of the operation,
and the other contains the discarded columns. For example, to list each employee’s
first and last name and salary, we can use the PROJECT operation as follows:

Taname, Fname, Salary(EMPLOYEE)

The resulting relation is shown in Figure 8.1(b). The general form of the PROJECT
operation is

T attribute Iist>(R)

where 1 (pi) is the symbol used to represent the PROJECT operation, and <attribute
list> is the desired sublist of attributes from the attributes of relation R. Again,
notice that R is, in general, a relational algebra expression whose result is a relation,
which in the simplest case is just the name of a database relation. The result of the
PROJECT operation has only the attributes specified in <attribute list> in the same
order as they appear in the list. Hence, its degree is equal to the number of attributes
in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are
likely to occur. The PROJECT operation removes any duplicate tuples, so the
result of the PROJECT operation is a set of distinct tuples, and hence a valid
relation. This is known as duplicate elimination. For example, consider the
following PROJECT operation:

Tlsex, Salary(EM PLOYEE)

The result is shown in Figure 8.1(c). Notice that the tuple <°F’, 25000> appears only
once in Figure 8.1(c), even though this combination of values appears twice in the
EMPLOYEE relation. Duplicate elimination involves sorting or some other technique to
detect duplicates and thus adds more processing. If duplicates are not eliminated, the
result would be a multiset or bag of tuples rather than a set. This was not permitted in
the formal relational model but is allowed in SQL (see Section 6.3).

The number of tuples in a relation resulting from a PROJECT operation is always
less than or equal to the number of tuples in R. If the projection list is a superkey of
R—that is, it includes some key of R—the resulting relation has the same number of
tuples as R. Moreover,

Tjist1> (n<list2>(R)) = 71:<Iist1>(R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is
an incorrect expression. It is also noteworthy that commutativity does not hold
on PROJECT.

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For
example, the following operation:

Tlsex, Salary(EM PI—OYEE)
would correspond to the following SQL query:

SELECT DISTINCT Sex, Salary
FROM EMPLOYEE
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Notice that if we remove the keyword DISTINCT from this SQL query, then dupli-
cates will not be eliminated. This option is not available in the formal relational
algebra, but the algebra can be extended to include this operation and allow rela-
tions to be multisets; we do not discuss these extensions here.

8.1.3 Sequences of Operations and the RENAME Operation

The relations shown in Figure 8.1 that depict operation results do not have any
names. In general, for most queries, we need to apply several relational algebra
operations one after the other. Either we can write the operations as a single
relational algebra expression by nesting the operations, or we can apply one operation
at a time and create intermediate result relations. In the latter case, we must give
names to the relations that hold the intermediate results. For example, to retrieve
the first name, last name, and salary of all employees who work in department
number 5, we must apply a SELECT and a PROJECT operation. We can write a sin-
gle relational algebra expression, also known as an in-line expression, as follows:

nFname, Lname, Salary(GDn0=5(EMPLOYEE))

Figure 8.2(a) shows the result of this in-line relational algebra expression. Alterna-
tively, we can explicitly show the sequence of operations, giving a name to each
intermediate relation, and using the assignment operation, denoted by « (left
arrow), as follows:

DEP5_EMPS <— Gppno_s(EMPLOYEE)
RESULT « 7'l:Fname, Lname, Salary(DEP5_EMPS)

It is sometimes simpler to break down a complex sequence of operations by specify-
ing intermediate result relations than to write a single relational algebra expression.
We can also use this technique to rename the attributes in the intermediate and
result relations. This can be useful in connection with more complex operations
such as UNION and JOIN, as we shall see. To rename the attributes in a relation, we
simply list the new attribute names in parentheses, as in the following example:

TEMP < Gppo_s(EMPLOYEE)
R(First_name, Last_name, Salary) <— Ttrname, Lname, Salary(TEMP)

These two operations are illustrated in Figure 8.2(b).

If no renaming is applied, the names of the attributes in the resulting relation of a
SELECT operation are the same as those in the original relation and in the same
order. For a PROJECT operation with no renaming, the resulting relation has the
same attribute names as those in the projection list and in the same order in which
they appear in the list.

We can also define a formal RENAME operation—which can rename either the rela-
tion name or the attribute names, or both—as a unary operator. The general
RENAME operation when applied to a relation R of degree 7 is denoted by any of the
following three forms:

Psea1, 82, .., 8n)(R) or ps(R) or Ps1,ss, .., 60)(R)
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(@)

Fname | Lname | Salary

John Smith 30000

Franklin | Wong 40000

Ramesh | Narayan | 38000

Joyce English | 25000

(b)

TEMP

Fname | Minit | Lname Ssn. Bdate Address Sex | Salary | Super_ssn |Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston,TX | M 30000 | 333445555 | 5
Franklin T Wong 333445555 | 1955-12-08 | 638 Voss, Houston,TX M 40000 | 888665555 | 5
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble,TX | M 38000 | 333445555 | 5
Joyce A English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX F 25000 | 333445555 | 5
R

First_name | Last_name | Salary

John Smith 30000

Franklin Wong 40000

Ramesh Narayan 38000

Joyce English 25000

Figure 8.2

Results of a sequence of operations. (&) Trname, Lname, Salary (6pno=s(EMPLOYEE)).

(b) Using intermediate relations and renaming of attributes.

where the symbol p (rho) is used to denote the RENAME operator, S is the new rela-
tion name, and By, B,, ... , B, are the new attribute names. The first expression
renames both the relation and its attributes, the second renames the relation only,
and the third renames the attributes only. If the attributes of R are (A, A,, ..., A,)
in that order, then each A, is renamed as B,.

In SQL, a single query typically represents a complex relational algebra expression.
Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary
FROM EMPLOYEE AS E
WHERE E.Dno=5,

8.2 Relational Algebra Operations
from Set Theory

8.2.1 The UNION, INTERSECTION, and MINUS Operations

The next group of relational algebra operations are the standard mathematical
operations on sets. For example, to retrieve the Social Security numbers of all
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employees who either work in department 5 or directly supervise an employee who
works in department 5, we can use the UNION operation as follows:*

DEP5_EMPS <— Gppo_s(EMPLOYEE)
RESULT1 < Tgs,(DEP5_EMPS)
RESULT2(Ssn) ¢~ Tsyper ssn(DEP5_EMPS)
RESULT «— RESULT1 U RESULT2

The relation RESULT1 has the Ssn of all employees who work in department 5,
whereas RESULT2 has the Ssn of all employees who directly supervise an employee
who works in department 5. The UNION operation produces the tuples that are in
either RESULT1 or RESULT2 or both (see Figure 8.3) while eliminating any dupli-
cates. Thus, the Ssn value 333445555 appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in vari-
ous ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called
MINUS or EXCEPT). These are binary operations; that is, each is applied to two sets
(of tuples). When these operations are adapted to relational databases, the two rela-
tions on which any of these three operations are applied must have the same type of
tuples; this condition has been called union compatibility or type compatibility.
Two relations R(A, Ay, ... , A,) and S(B;, B,, ..., B,) are said to be union
compatible (or type compatible) if they have the same degree #n and if dom(4;) =
dom(B;) for 1 < i < n. This means that the two relations have the same number of
attributes and each corresponding pair of attributes has the same domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE
on two union-compatible relations R and S as follows:

B UNION: The result of this operation, denoted by R U §, is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate
tuples are eliminated.

B INTERSECTION: The result of this operation, denoted by R N S, is a relation
that includes all tuples that are in both R and S.

B SET DIFFERENCE (or MINUS): The result of this operation, denoted by R - S,
is a relation that includes all tuples that are in R but not in S.
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RESULT1 RESULT2 RESULT Figure 8.3
Ssn Ssn Ssn
123456789 333445555 123456789
333445555 888665555 333445555
666884444 666884444
453453453 453453453
888665555

Result of the UNION operation
RESULT « RESULT1 u RESULT2.

4As a single relational algebra expression, this becomes Result « Ttsg,, (Gppo=5 (EMPLOYEE) ) U
TCSuperﬁssn (GDno=5 (EMPLOYEE))-
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We will adopt the convention that the resulting relation has the same attribute
names as the first relation R. It is always possible to rename the attributes in the
result using the rename operator.

Figure 8.4 illustrates the three operations. The relations STUDENT and INSTRUCTOR
in Figure 8.4(a) are union compatible and their tuples represent the names of stu-
dents and the names of instructors, respectively. The result of the UNION operation
in Figure 8.4(b) shows the names of all students and instructors. Note that duplicate
tuples appear only once in the result. The result of the INTERSECTION operation
(Figure 8.4(c)) includes only those who are both students and instructors.

Notice that both UNION and INTERSECTION are commutative operations; that is,
RUS=SUR and RNS=SNR

Both UNION and INTERSECTION can be treated as n-ary operations applicable to
any number of relations because both are also associative operations; that is,

RUBUT)=RUS)UT and (RNS)NT=RN(SNT)

Figure 8.4
The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.

(b) STUDENT U INSTRUCTOR. (c) STUDENT n INSTRUCTOR. (d) STUDENT — INSTRUCTOR.

(e) INSTRUCTOR — STUDENT.

(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname (b) Fn Ln
Susan Yao John Smith Susan Yao
Ramesh | Shah Ricardo | Browne Ramesh | Shah
Johnny Kohler Susan Yao Johnny Kohler
Barbara | Jones Francis | Johnson Barbara | Jones
Amy Ford Ramesh | Shah Amy Ford
Jimmy Wang Jimmy Wang
Ernest Gilbert Ernest Gilbert
John Smith
Ricardo | Browne
Francis | Johnson
(© Fn Ln (d) Fn Ln ©) | Frame | Lname
Susan Yao Johnny Kohler John Smith
Ramesh | Shah Barbara | Jones Ricardo | Browne
Amy Ford Francis | Johnson
Jimmy Wang
Ernest Gilbert
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The MINUS operation is not commutative; that is, in general,
R-S#S-R

Figure 8.4(d) shows the names of students who are not instructors, and Fig-
ure 8.4(e) shows the names of instructors who are not students.

Note that INTERSECTION can be expressed in terms of union and set difference as
follows:

RNS=(RUS)-(R-S))-(S-R)

In SQL, there are three operations—UNION, INTERSECT, and EXCEPT—that corre-
spond to the set operations described here. In addition, there are multiset opera-
tions (UNION ALL, INTERSECT ALL, and EXCEPT ALL) that do not eliminate
duplicates (see Section 6.3.4).

8.2.2 The CARTESIAN PRODUCT (CROSS PRODUCT)
Operation

Next, we discuss the CARTESIAN PRODUCT operation—also known as CROSS
PRODUCT or CROSS JOIN-which is denoted by x. This is also a binary set opera-
tion, but the relations on which it is applied do not have to be union compatible. In
its binary form, this set operation produces a new element by combining every
member (tuple) from one relation (set) with every member (tuple) from the other
relation (set). In general, the result of R(Ay, Ay, ..., A,) X S(By, By, ..., By,) is a rela-
tion Q with degree n + m attributes Q(Ay, Ay, ..., A, By, By, ..., By,), in that order.
The resulting relation Q has one tuple for each combination of tuples—one from R
and one from S. Hence, if R has np tuples (denoted as |R| = ny), and S has ng tuples,
then R x S will have np * ng tuples.

The n-ary CARTESIAN PRODUCT operation is an extension of the above concept,
which produces new tuples by concatenating all possible combinations of tuples
from n underlying relations. The CARTESIAN PRODUCT operation applied by itself
is generally meaningless. It is mostly useful when followed by a selection that
matches values of attributes coming from the component relations. For example,
suppose that we want to retrieve a list of names of each female employee’s depen-
dents. We can do this as follows:

FEMALE_EMPS ¢ Gge,—(EMPLOYEE)

EMPNAMES < Tename, Lname, Ssn(FEMALE_EMPS)
EMP_DEPENDENTS < EMPNAMES x DEPENDENT
ACTUAL_DEPENDENTS ¢— Gggn—gssn(EMP_DEPENDENTS)
RESULT ¢— Tname, Lname, Dependent name(ACTUAL_DEPENDENTS)

The resulting relations from this sequence of operations are shown in Figure 8.5.
The EMP_DEPENDENTS relation is the result of applying the CARTESIAN PRODUCT
operation to EMPNAMES from Figure 8.5 with DEPENDENT from Figure 5.6. In
EMP_DEPENDENTS, every tuple from EMPNAMES is combined with every tuple
from DEPENDENT, giving a result that is not very meaningful (every dependent is
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Figure 8.5

The CARTESIAN PRODUCT (CROSS PRODUCT) operation.
FEMALE_EMPS

Fname |Minit | Lname Ssn Bdate Address Sex| Salary| Super_ssn [Dno
Alicia J Zelaya | 999887777 |1968-07-19 | 3321Castle, Spring, TX 25000(987654321| 4
Jennifer| S | Wallace | 987654321 |1941-06-20 | 291Berry, Bellaire, TX F [43000({888665555| 4
Joyce A | English | 463453453 |1972-07-31 | 5631 Rice, Houston, TX| F |25000{333445555| 5
EMPNAMES

Fname | Lname Ssn

Alicia Zelaya | 999887777

Jennifer | Wallace | 987654321

Joyce English | 4563453453
EMP_DEPENDENTS

Fname | Lname Ssn Essn Dependent_name | Sex Bdate

Alicia Zelaya | 999887777 | 333445555 Alice F 1986-04-05

Alicia | Zelaya |999887777 | 333445555 Theodore M | 1983-10-25

Alicia Zelaya | 999887777 | 333445555 Joy F 1958-05-03

Alicia Zelaya | 999887777 | 987654321 Abner M | 1942-02-28

Alicia Zelaya | 999887777 | 123456789 Michael M | 1988-01-04

Alicia | Zelaya |999887777 | 123456789 Alice F | 1988-12-30

Alicia | Zelaya |999887777 | 123456789 Elizabeth F | 1967-05-05

Jennifer | Wallace | 987654321 | 333445555 Alice F 1986-04-05

Jennifer | Wallace | 987654321 | 333445555 Theodore M | 1983-10-25

Jennifer | Wallace | 987654321 | 333445555 Joy F 1958-05-03

Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28

Jennifer | Wallace | 987654321 | 123456789 Michael M | 1988-01-04

Jennifer | Wallace | 987654321 | 123456789 Alice F 1988-12-30

Jennifer | Wallace | 987654321 | 123456789 Elizabeth F | 1967-05-05

Joyce | English | 453453453 | 333445555 Alice F | 1986-04-05

Joyce | English | 4563453453 | 333445555 Theodore M | 1983-10-25

Joyce English | 453453453 | 333445555 Joy F 1958-05-03

Joyce | English | 453453453 | 987654321 Abner M | 1942-02-28

Joyce | English | 4563453453 | 123456789 Michael M | 1988-01-04

Joyce | English | 4563453453 | 123456789 Alice F | 1988-12-30

Joyce English | 4563453453 | 123456789 Elizabeth F 1967-05-05
ACTUAL_DEPENDENTS

Fname | Lname Ssn Essn Dependent_name | Sex Bdate

Jennifer | Wallace | 987654321 | 987654321 Abner M | 1942-02-28
RESULT

Fname | Lname | Dependent_name

Jennifer | Wallace Abner
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combined with every female employee). We want to combine a female employee
tuple only with her particular dependents—namely, the DEPENDENT tuples whose
Essn value match the Ssn value of the EMPLOYEE tuple. The ACTUAL_DEPENDENTS
relation accomplishes this. The EMP_DEPENDENTS relation is a good example of
the case where relational algebra can be correctly applied to yield results that make
no sense at all. It is the responsibility of the user to make sure to apply only mean-
ingful operations to relations.

The CARTESIAN PRODUCT creates tuples with the combined attributes of two rela-
tions. We can SELECT related tuples only from the two relations by specifying an
appropriate selection condition after the Cartesian product, as we did in the pre-
ceding example. Because this sequence of CARTESIAN PRODUCT followed by
SELECT is quite commonly used to combine related tuples from two relations, a
special operation, called JOIN, was created to specify this sequence as a single opera-
tion. We discuss the JOIN operation next.

In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option in
joined tables (see Section 7.1.6). Alternatively, if there are two tables in the FROM
clause and there is no corresponding join condition in the WHERE clause of the
SQL query, the result will also be the CARTESIAN PRODUCT of the two tables (see
Q10 in Section 6.3.3).

8.3 Binary Relational Operations:
JOIN and DIVISION

8.3.1 The JOIN Operation

The JOIN operation, denoted by ™, is used to combine related tuples from two rela-
tions into single “longer” tuples. This operation is very important for any relational
database with more than a single relation because it allows us to process relation-
ships among relations. To illustrate JOIN, suppose that we want to retrieve the name
of the manager of each department. To get the manager’s name, we need to com-
bine each department tuple with the employee tuple whose Ssn value matches the
Mgr_ssn value in the department tuple. We do this by using the JOIN operation and
then projecting the result over the necessary attributes, as follows:

DEPT_MGR ¢~ DEPARTMENT X yio, con-ssn EMPLOYEE
RESULT « nDname, Lname, Fname(DEPT_MGR)

The first operation is illustrated in Figure 8.6. Note that Mgr_ssn is a foreign key of
the DEPARTMENT relation that references Ssn, the primary key of the EMPLOYEE
relation. This referential integrity constraint plays a role in having matching tuples
in the referenced relation EMPLOYEE.

The JOIN operation can be specified as a CARTESIAN PRODUCT operation fol-
lowed by a SELECT operation. However, JOIN is very important because it is
used frequently when specifying database queries. Consider the earlier example
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Figure 8.6
Result of the JOIN operation DEPT_MGR « DEPARTMENT ™ 0 on—55nEMPLOYEE.
DEPT_MGR
Dname Dnumber Mgr_ssn Fname | Minit Lname Ssn
Research 5 333445555 Franklin T Wong 333445555
Administration 4 987654321 Jennifer S Wallace | 987654321
Headquarters 1 888665555 James E Borg 888665555

illustrating CARTESIAN PRODUCT, which included the following sequence of
operations:

EMP_DEPENDENTS <« EMPNAMES x DEPENDENT
ACTUAL_DEPENDENTS ¢ Gsgnssn(EMP_DEPENDENTS)

These two operations can be replaced with a single JOIN operation as follows:

ACTUAL_DEPENDENTS - EMPNAMES ™ g _gssnDEPENDENT

The general form of a JOIN operation on two relations® R(A;, A, ..., A,) and
S(By, By, ..., B,,) is

RM™ <join condition>S
The result of the JOIN is a relation Q with n + m attributes Q(A;, A,, ..., A,, By, By,

.., B,,) in that order; Q has one tuple for each combination of tuples—one from
R and one from S—whenever the combination satisfies the join condition. This is
the main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combi-
nations of tuples satisfying the join condition appear in the result, whereas in the
CARTESIAN PRODUCT all combinations of tuples are included in the result. The
join condition is specified on attributes from the two relations R and S and is
evaluated for each combination of tuples. Each tuple combination for which the
join condition evaluates to TRUE is included in the resulting relation Q as a single
combined tuple.

A general join condition is of the form
<condition> AND <condition> AND ... AND <condition>

where each <condition> is of the form A; 6 B, A; is an attribute of R, B; is an attri-
bute of S, A; and B; have the same domain, and 0 (theta) is one of the comparison
operators {=, <, <, >, 2, #}. A JOIN operation with such a general join condition is
called a THETA JOIN. Tuples whose join attributes are NULL or for which the join
condition is FALSE do not appear in the result. In that sense, the JOIN operation
does not necessarily preserve all of the information in the participating relations,
because tuples that do not get combined with matching ones in the other relation

do not appear in the result.

5Again, notice that R and S can be any relations that result from general relational algebra expressions.



8.3 Binary Relational Operations: JOIN and DIVISION

8.3.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons
only. Such a JOIN, where the only comparison operator used is =, is called an
EQUUOIN. Both previous examples were EQUIJOINs. Notice that in the result of an
EQUIOIN we always have one or more pairs of attributes that have identical values
in every tuple. For example, in Figure 8.6, the values of the attributes Mgr_ssn and
Ssn are identical in every tuple of DEPT_MGR (the EQUUOIN result) because the
equality join condition specified on these two attributes requires the values to be
identical in every tuple in the result. Because one of each pair of attributes with
identical values is superfluous, a new operation called NATURAL JOIN—denoted
by *—was created to get rid of the second (superfluous) attribute in an EQUIJOIN
condition.® The standard definition of NATURAL JOIN requires that the two join
attributes (or each pair of join attributes) have the same name in both relations. If
this is not the case, a renaming operation is applied first.

Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple that
controls the project. In the following example, first we rename the Dnumber attribute
of DEPARTMENT to Dnum—so that it has the same name as the Dnum attribute in
PROJECT—and then we apply NATURAL JOIN:

PROJ_DEPT «— PROJECT * p(Dname, Dnum, Mgr_ssn, Mgrﬁstartﬁdate)(DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT
as follows:

DEPT « p(Dname, Dnum, Mgr_ssn, Mgrﬁstartﬁdate)(DEPARTMENT)
PROJ_DEPT < PROJECT * DEPT

The attribute Dnum is called the join attribute for the NATURAL JOIN operation,
because it is the only attribute with the same name in both relations. The resulting
relation is illustrated in Figure 8.7(a). In the PROJ_DEPT relation, each tuple combines
a PROJECT tuple with the DEPARTMENT tuple for the department that controls the
project, but only one join attribute value is kept.

If the attributes on which the natural join is specified already have the same names
in both relations, renaming is unnecessary. For example, to apply a natural join
on the Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient
to write

DEPT_LOCS <« DEPARTMENT * DEPT_LOCATIONS

The resulting relation is shown in Figure 8.7(b), which combines each department
with its locations and has one tuple for each location. In general, the join condition
for NATURAL JOIN is constructed by equating each pair of join attributes that have
the same name in the two relations and combining these conditions with AND.
There can be a list of join attributes from each relation, and each corresponding
pair must have the same name.

SNATURAL JOIN is basically an EQUIJOIN followed by the removal of the superfluous attributes.
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(@
PROJ_DEPT
Pname Pnumber Plocation Dnum Dname Mgr_ssn Mgr_start_date

ProductX 1 Bellaire 5 Research 333445555 1988-05-22
ProductY 2 Sugarland 5 Research 333445555 1988-05-22
ProductZ 3 Houston 5 Research 333445555 1988-05-22
Computerization 10 Stafford 4 Administration | 987654321 1995-01-01
Reorganization 20 Houston 1 Headquarters | 888665555 1981-06-19
Newbenefits 30 Stafford 4 Administration | 987654321 1995-01-01

(b)

DEPT_LOCS

Dname Dnumber Mgr_ssn Mgr_start_date Location
Headquarters 1 888665555 1981-06-19 Houston
Administration 4 987654321 1995-01-01 Stafford
Research 5 333445555 1988-05-22 Bellaire
Research 5 333445555 1988-05-22 Sugarland
Research 5 333445555 1988-05-22 Houston
Figure 8.7

Results of two natural join operations. (a) proj_dept « project * dept.
(b) dept_locs « department + dept_locations.

Notice that if no combination of tuples satisfies the join condition, the result of a
JOIN is an empty relation with zero tuples. In general, if R has sy tuples and S has
ng tuples, the result of a JOIN operation R> _j,in condition> S Will have between zero
and ng * ng tuples. The expected size of the join result divided by the maximum
size ng * ng leads to a ratio called join selectivity, which is a property of each join
condition. If there is no join condition, all combinations of tuples qualify and the
JOIN degenerates into a CARTESIAN PRODUCT, also called CROSS PRODUCT or
CROSS JOIN.

As we can see, a single JOIN operation is used to combine data from two relations so
that related information can be presented in a single table. These operations are
also known as inner joins, to distinguish them from a different join variation called
outer joins (see Section 8.4.4). Informally, an inner join is a type of match-and-
combine operation defined formally as a combination of CARTESIAN PRODUCT
and SELECTION. Note that sometimes a join may be specified between a relation
and itself, as we will illustrate in Section 8.4.3. The NATURAL JOIN or EQUIJOIN
operation can also be specified among multiple tables, leading to an n-way join. For
example, consider the following three-way join:

((PROJECT ™ ppym=pnumberDEPARTMENT) ™ 1o oo ssnEMPLOYEE)
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This combines each project tuple with its controlling department tuple into a single
tuple, and then combines that tuple with an employee tuple that is the department
manager. The net result is a consolidated relation in which each tuple contains this
project-department-manager combined information.

In SQL, JOIN can be realized in several different ways. The first method is to specify
the <join conditions> in the WHERE clause, along with any other selection condi-
tions. This is very common and is illustrated by queries Q1, Q1A, Q1B, Q2, and Q8
in Sections 6.3.1 and 6.3.2, as well as by many other query examples in Chapters 6
and 7. The second way is to use a nested relation, as illustrated by queries Q4A
and Q16 in Section 7.1.2. Another way is to use the concept of joined tables, as
illustrated by the queries Q1A, Q1B, Q8B, and Q2A in Section 7.1.6. The construct
of joined tables was added to SQL2 to allow the user to specify explicitly all the
various types of joins, because the other methods were more limited. It also allows
the user to clearly distinguish join conditions from the selection conditions in the
WHERE clause.

8.3.3 A Complete Set of Relational Algebra Operations

It has been shown that the set of relational algebra operations {c, &, U, p, -, x} is a
complete set; that is, any of the other original relational algebra operations can be
expressed as a sequence of operations from this set. For example, the INTERSECTION
operation can be expressed by using UNION and MINUS as follows:

RNS=RUS)-((R-S)uU(S-R))

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to
specify this complex expression every time we wish to specify an intersection. As
another example, a JOIN operation can be specified as a CARTESIAN PRODUCT fol-
lowed by a SELECT operation, as we discussed:

R <condition>S = G<condition>(R X S)

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various
JOIN operations are also not strictly necessary for the expressive power of the rela-
tional algebra. However, they are important to include as separate operations
because they are convenient to use and are very commonly applied in database
applications. Other operations have been included in the basic relational algebra
for convenience rather than necessity. We discuss one of these—the DIVISION
operation—in the next section.

8.3.4 The DIVISION Operation

The DIVISION operation, denoted by +, is useful for a special kind of query that
sometimes occurs in database applications. An example is Retrieve the names of
employees who work on all the projects that John Smith’ works on. To express
this query using the DIVISION operation, proceed as follows. First, retrieve the
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list of project numbers that ‘John Smith” works on in the intermediate relation
SMITH_PNOS:

SMITH ¢ OFname=John’ AND Lname:‘Smith’(EMPLOYEE)
SMITH_PNOS ¢ Ttp,o(WORKS_ON > Essn:SsnSMITH)

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee
whose Ssn is Essn works on the project whose number is Pno in the intermediate
relation SSN_PNOS:

SSN_PNOS ¢~ Tgegn pno( WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees’ Social Security numbers:

SSNS(Ssn) < SSN_PNOS + SMITH_PNOS
RESULT ¢ Tename, Lname(SSNS * EMPLOYEE)

The preceding operations are shown in Figure 8.8(a).

In general, the DIVISION operation is applied to two relations R(Z) + S(X), where the
attributes of S are a subset of the attributes of R; that is, X — Z. Let Y be the set of
attributes of R that are not attributes of S; thatis, Y =7 - X (and hence Z=X U Y).

Figure 8.8
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T« R+ S.
@) (b)
SSN_PNOS SMITH_PNOS R S

Essn Pno Pno A B A

123456789 1 1 al | b1 al

123456789 2 2 a2 | bt a2

666884444 3 a3 | b1 a3

453453453 1 ad | bl

453453453 2 SSNS al | b2

333445555 2 Ssn a3 | b2 B

333445555 3 123456789 a2 b3 b1

333445555 | 10 453453453 a3 | b3 b4

333445555 | 20 a4 | b3

999887777 | 30 al | b4

999887777 10 a2 | b4

987987987 10 a3 | b4

987987987 30

987654321 30

987654321 20

888665555 | 20
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The result of DIVISION is a relation T(Y) that includes a tuple ¢ if tuples g appear in
R with g [Y] = ¢, and with ty [X] = tg for every tuple tg in S. This means that, for a
tuple ¢ to appear in the result T of the DIVISION, the values in f must appear in R in
combination with every tuple in S. Note that in the formulation of the DIVISION
operation, the tuples in the denominator relation S restrict the numerator rela-
tion R by selecting those tuples in the result that match all values present in the
denominator. It is not necessary to know what those values are as they can be
computed by another operation, as illustrated in the SMITH_PNOS relation in
the previous example.

Figure 8.8(b) illustrates a DIVISION operation where X = {A}, Y ={B},and Z = {A, B}.
Notice that the tuples (values) b; and b, appear in R in combination with all three
tuples in S; that is why they appear in the resulting relation T. All other values of B
in R do not appear with all the tuples in S and are not selected: b, does not appear
with a,, and b; does not appear with a;.

The DIVISION operation can be expressed as a sequence of T, X, and - operations as
follows:

T1 (—ny(R)
T2  1y((S x T1) - R)
T—T1-1T2

The DIVISION operation is defined for convenience for dealing with queries that
involve universal quantification (see Section 8.6.7) or the all condition. Most
RDBMS implementations with SQL as the primary query language do not directly
implement division. SQL has a roundabout way of dealing with the type of query
just illustrated (see Section 7.1.4, queries Q3A and Q3B). Table 8.1 lists the various
basic relational algebra operations we have discussed.

8.3.5 Notation for Query Trees

In this section we describe a notation typically used in relational DBMSs (RDBMSs)
to represent queries internally. The notation is called a query tree or sometimes it is
known as a query evaluation tree or query execution tree. It includes the relational
algebra operations being executed and is used as a possible data structure for the
internal representation of the query in an RDBMS.

A query tree is a tree data structure that corresponds to a relational algebra expres-
sion. It represents the input relations of the query as leaf nodes of the tree, and rep-
resents the relational algebra operations as internal nodes. An execution of the
query tree consists of executing an internal node operation whenever its operands
(represented by its child nodes) are available, and then replacing that internal node
by the relation that results from executing the operation. The execution terminates
when the root node is executed and produces the result relation for the query.

Figure 8.9 shows a query tree for Query 2 (see Section 6.3.1): For every project
located in Stafford’, list the project number, the controlling department number, and
the department manager’s last name, address, and birth date. This query is specified
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Table 8.1  Operations of Relational Algebra

OPERATION PURPOSE NOTATION

SELECT Selects all tuples that satisfy the selection O <selection conditions (R)
condition from a relation R.

PROJECT Produces a new relation with only some of the  TT_,yibute list>(R)
attributes of R, and removes duplicate tuples.

THETA JOIN Produces all combinations of tuples from R; R4 ™ jgin condition> R2
and R, that satisfy the join condition.

EQUIJOIN Produces all the combinations of tuples from Ry ™ jgin condition> Ra» OR
R; and R, that satisfy a join condition with Ry ™ (oin attributes 15),
only equality comparisons. (<join attributes 25) K2

NATURAL JOIN Same as EQUIJOIN except that the join attributes  Ry*join condition> Ra»
of R, are not included in the resulting relation; ~ OR Ry* ((join attributes 1>),
if the join attributes have the same names, they  (join attributes 2>)
do not have to be specified at all. R, ORR; * R,

UNION Produces a relation that includes all the tuples R, UR,
in R; or R, or both R; and Ry; Ry and R, must
be union compatible.

INTERSECTION Produces a relation that includes all the tuples R "R,
in both R; and Ry; R; and R, must be union
compatible.

DIFFERENCE Produces a relation that includes all the tuples  R; - R,
in Ry that are not in Ry; R; and R, must be
union compatible.

CARTESIAN PRODUCT  Produces a relation that has the attributes of R, xR,

DIVISION

R; and R, and includes as tuples all possible
combinations of tuples from R; and R,.
Produces a relation R(X) that includes all tuples
t[X] in R;(Z) that appear in R in combination
with every tuple from R,(Y), where Z=X U Y.

Ry(Z) + Ry(Y)

on the relational schema of Figure 5.5 and corresponds to the following relational

algebra expression:

TUPnumber, Dnum, Lname, Address, Bdate(((GPIocation:‘Stafford’(PROJECT))
s Dnum:Dnumber(DEPARTMENT)) e Mgrﬁssn:Ssn(EMPLOYEE))

In Figure 8.9, the three leaf nodes P, D, and E represent the three relations PROJECT,
DEPARTMENT, and EMPLOYEE. The relational algebra operations in the expression are
represented by internal tree nodes. The query tree signifies an explicit order of execu-
tion in the following sense. In order to execute Q2, the node marked (1) in Figure 8.9
must begin execution before node (2) because some resulting tuples of opera-
tion (1) must be available before we can begin to execute operation (2). Similarly,
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T P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate

(1)
*'D.Mgr_ssn=E.Ssn

(2)

> P.Dnum=D.Dnumber G EMPLOYEE

W

Sp. Plocatlon— ‘Stafford’ DEPARTMENT
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Figure 8.9

Query tree corresponding

to the relational algebra
PROJECT i

expression for Q2.

node (2) must begin to execute and produce results before node (3) can start execution,
and so on. In general, a query tree gives a good visual representation and understand-
ing of the query in terms of the relational operations it uses and is recommended as
an additional means for expressing queries in relational algebra. We will revisit query
trees when we discuss query processing and optimization in Chapters 18 and 19.

8.4 Additional Relational Operations

Some common database requests—which are needed in commercial applications
for RDBMSs—cannot be performed with the original relational algebra operations
described in Sections 8.1 through 8.3. In this section we define additional opera-
tions to express these requests. These operations enhance the expressive power of
the original relational algebra.

8.4.1 Generalized Projection

The generalized projection operation extends the projection operation by allowing
functions of attributes to be included in the projection list. The generalized form
can be expressed as:

TpL, B2, ..., Fn (R)

where Fy, F,, ..., F,, are functions over the attributes in relation R and may involve
arithmetic operations and constant values. This operation is helpful when devel-
oping reports where computed values have to be produced in the columns of a
query result.



260

Chapter 8 The Relational Algebra and Relational Calculus

As an example, consider the relation
EMPLOYEE (Ssn, Salary, Deduction, Years_service)
A report may be required to show

Net Salary = Salary — Deduction,
Bonus = 2000 * Years_service, and
Tax = 0.25 * Salary

Then a generalized projection combined with renaming may be used as follows:

REPORT « p(Ssn, Net_salary, Bonus, Tax)(nSsn, Salary — Deduction, 2000 * Years_service,
0.25* Salary(EMPLOYEE))

8.4.2 Aggregate Functions and Grouping

Another type of request that cannot be expressed in the basic relational algebra is
to specify mathematical aggregate functions on collections of values from the
database. Examples of such functions include retrieving the average or total salary
of all employees or the total number of employee tuples. These functions are used
in simple statistical queries that summarize information from the database
tuples. Common functions applied to collections of numeric values include SUM,
AVERAGE, MAXIMUM, and MINIMUM. The COUNT function is used for counting
tuples or values.

Another common type of request involves grouping the tuples in a relation by the
value of some of their attributes and then applying an aggregate function indepen-
dently to each group. An example would be to group EMPLOYEE tuples by Dno, so
that each group includes the tuples for employees working in the same department.
We can then list each Dno value along with, say, the average salary of employees
within the department, or the number of employees who work in the department.

We can define an AGGREGATE FUNCTION operation, using the symbol I (pro-
nounced script F)’, to specify these types of requests as follows:

<grouping attributes> 3 <function list> (R)

where <grouping attributes> is a list of attributes of the relation specified in R, and
<function list> is a list of (<function> <attribute>) pairs. In each such pair, <function>
is one of the allowed functions—such as SUM, AVERAGE, MAXIMUM, MINIMUM,
COUNT—and <attribute> is an attribute of the relation specified by R. The resulting
relation has the grouping attributes plus one attribute for each element in the function
list. For example, to retrieve each department number, the number of employees in
the department, and their average salary, while renaming the resulting attributes as
indicated below, we write:

pR(Dno, No_of_employees, Average_sal) (Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE))

"There is no single agreed-upon notation for specifying aggregate functions. In some cases a “script A"
is used.
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R
(@) | pno No_of_employees Average_sal (®) | Dno Count_ssn Average_salary

5 4 33250 5 4 33250

4 3 31000 4 3 31000

1 1 55000 1 55000
(© | Count_ssn Average_salary

8 35125

Figure 8.10

The aggregate function operation.

a. PR(Dno, No_of_employees, Average_sal)(Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE)).
b. bno S COUNT Ssn, AVERAGE Salary (EMPLOYEE).

C. 3 COUNT Ssn, AVERAGE Salary(EMPLOYEE).

The result of this operation on the EMPLOYEE relation of Figure 5.6 is shown in
Figure 8.10(a).

In the preceding example, we specified a list of attribute names—between parenthe-
ses in the RENAME operation—for the resulting relation R. If no renaming is applied,
then the attributes of the resulting relation that correspond to the function list will
each be the concatenation of the function name with the attribute name in the form
<function>_<attribute>.® For example, Figure 8.10(b) shows the result of the fol-
lowing operation:

Dno 3 COUNT Ssn, AVERAGE Salary(EMPLOYEE)

If no grouping attributes are specified, the functions are applied to all the tuples
in the relation, so the resulting relation has a single tuple only. For example, Fig-
ure 8.10(c) shows the result of the following operation:

S COUNT Ssn, AVERAGE Salary(EMPLOYEE)

It is important to note that, in general, duplicates are not eliminated when an
aggregate function is applied; this way, the normal interpretation of functions such
as SUM and AVERAGE is computed.9 However, NULL values are not considered in
the aggregation, as we discussed in Section 7.1.7. It is worth emphasizing that the
result of applying an aggregate function is a relation, not a scalar number—even
if it has a single value. This makes the relational algebra a closed mathematical
system.

8Note that this is an arbitrary notation, consistent with what SQL would do.

®In SQL, the option of eliminating duplicates before applying the aggregate function is available by
including the keyword DISTINCT (see Section Section 4.4.4).
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8.4.3 Recursive Closure Operations

Another type of operation that, in general, cannot be specified in the basic original
relational algebra is recursive closure. This operation is applied to a recursive
relationship between tuples of the same type, such as the relationship between an
employee and a supervisor. This relationship is described by the foreign key
Super_ssn of the EMPLOYEE relation in Figures 5.5 and 5.6, and it relates each
employee tuple (in the role of supervisee) to another employee tuple (in the role of
supervisor). An example of a recursive operation is to retrieve all supervisees of an
employee e at all levels—that is, all employees ¢ directly supervised by e, all employ-
ees ¢’S directly supervised by each employee ¢, all employees ¢”” directly super-
vised by each employee ¢”, and so on.

It is relatively straightforward in the relational algebra to specify all employees
supervised by e at a specific level by joining the table with itself one or more
times. However, it is difficult to specify all supervisees at all levels. For example,
to specify the Ssns of all employees e’ directly supervised—at level one—Dby the
employee e whose name is ‘James Borg’ (see Figure 5.6), we can apply the follow-
ing operation:

BORG_SSN « nSsn(GFname:‘Iames’ AND Lname:‘Borg’(EMPLOYEE))
SUPERVISION(Ssn1, Ssn2) ¢ Tsen super ssn(EMPLOYEE)
RESULT1(Ssn) < Tisen1(SUPERVISION X g.p_sBORG_SSN)

To retrieve all employees supervised by Borg at level 2—that is, all employees e”
supervised by some employee ¢’ who is directly supervised by Borg—we can apply
another JOIN to the result of the first query, as follows:

RESULT2(Ssn) < Tggn1 (SUPERVISION ™ g¢10-56nRESULT1)

To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we can
apply the UNION operation to the two results, as follows:

RESULT «— RESULT2 U RESULT1

The results of these queries are illustrated in Figure 8.11. Although it is possible to
retrieve employees at each level and then take their UNION, we cannot, in general,
specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” without
utilizing a looping mechanism unless we know the maximum number of levels.'
An operation called the transitive closure of relations has been proposed to com-
pute the recursive relationship as far as the recursion proceeds.

8.4.4 OUTER JOIN Operations

Next, we discuss some additional extensions to the JOIN operation that are nec-
essary to specify certain types of queries. The JOIN operations described earlier
match tuples that satisfy the join condition. For example, for a NATURAL JOIN

1%The SQL3 standard includes syntax for recursive closure.
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SUPERVISION
(Borg's Ssn is 888665555)
(Ssn) (Super_ssn)
Ssn1 Ssn2
123456789 | 333445555
333445555 | 888665555
999887777 | 987654321
987654321 | 888665555
666884444 | 333445555
453453453 | 333445555
987987987 | 987654321
888665555 | null

RESULT1 RESULT2 RESULT
Ssn Ssn Ssn
333445555 123456789 123456789
987654321 999887777 999887777
(Supervised by Borg) 666884444 666884444
453453453 453453453
987987987 987987987
(Supervised by 333445555
Borg's subordinates) 987654321

(RESULT1 U RESULT2)

Figure 8.11
A two-level recursive

query.

operation R * §, only tuples from R that have matching tuples in S—and vice
versa—appear in the result. Hence, tuples without a matching (or related) tuple
are eliminated from the JOIN result. Tuples with NULL values in the join attri-
butes are also eliminated. This type of join, where tuples with no match are elim-
inated, is known as an inner join. The join operations we described earlier in
Section 8.3 are all inner joins. This amounts to the loss of information if the user
wants the result of the JOIN to include all the tuples in one or more of the com-
ponent relations.

A set of operations, called outer joins, were developed for the case where the user
wants to keep all the tuples in R, or all those in S, or all those in both relations in
the result of the JOIN, regardless of whether or not they have matching tuples in
the other relation. This satisfies the need of queries in which tuples from two
tables are to be combined by matching corresponding rows, but without losing
any tuples for lack of matching values. For example, suppose that we want a list of
all employee names as well as the name of the departments they manage if they
happen to manage a department; if they do not manage one, we can indicate it
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Figure 8.12
The result of a LEFT

OUTER JOIN operation.

RESULT
Fname Minit Lname Dname
John B Smith NULL
Franklin T Wong Research
Alicia J Zelaya NULL
Jennifer S Wallace | Administration
Ramesh K Narayan | NULL
Joyce A English NULL
Ahmad \Y Jabbar NULL
James E Borg Headquarters

with a NULL value. We can apply an operation LEFT OUTER JOIN, denoted by >4, to
retrieve the result as follows:

TEMP ¢ (EMPLOYEE ™ ggy-pmgr_ssnDEPARTMENT)
RESULT « nFname, Minit, Lname, Dname(TEMP)

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in R34 S;
if no matching tuple is found in S, then the attributes of S in the join result are filled or
padded with NULL values. The result of these operations is shown in Figure 8.12.

A similar operation, RIGHT OUTER JOIN, denoted by <, keeps every tuple in the
second, or right, relation S in the result of R > S. A third operation, FULL OUTER
JOIN, denoted by 3<, keeps all tuples in both the left and the right relations when no
matching tuples are found, padding them with NULL values as needed. The three
outer join operations are part of the SQL2 standard (see Section 7.1.6). These oper-
ations were provided later as an extension of relational algebra in response to the
typical need in business applications to show related information from multiple
tables exhaustively. Sometimes a complete reporting of data from multiple tables is
required whether or not there are matching values.

8.4.5 The OUTER UNION Operation

The OUTER UNION operation was developed to take the union of tuples from two
relations that have some common attributes, but are not union (type) compatible.
This operation will take the UNION of tuples in two relations R(X, Y) and S(X, Z)
that are partially compatible, meaning that only some of their attributes, say X, are
union compatible. The attributes that are union compatible are represented only
once in the result, and those attributes that are not union compatible from either
relation are also kept in the result relation T(X, Y, Z). It is therefore the same as a
FULL OUTER JOIN on the common attributes.

Two tuples t; in R and t, in S are said to match if #;[X] = ,[X]. These will be com-
bined (unioned) into a single tuple in t. Tuples in either relation that have no
matching tuple in the other relation are padded with NULL values. For example, an
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OUTER UNION can be applied to two relations whose schemas are STUDENT(Name,
Ssn, Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank). Tuples
from the two relations are matched based on having the same combination of
values of the shared attributes—Name, Ssn, Department. The resulting relation,
STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the
same (Name, Ssn, Department) combination will appear only once in the result.
Tuples appearing only in STUDENT will have a NULL for the Rank attribute, whereas
tuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. A
tuple that exists in both relations, which represent a student who is also an instruc-
tor, will have values for all its attributes.!!

Notice that the same person may still appear twice in the result. For example, we
could have a graduate student in the Mathematics department who is an instructor
in the Computer Science department. Although the two tuples representing that
person in STUDENT and INSTRUCTOR will have the same (Name, Ssn) values, they
will not agree on the Department value, and so will not be matched. This is because
Department has two different meanings in STUDENT (the department where the per-
son studies) and INSTRUCTOR (the department where the person is employed as an
instructor). If we wanted to apply the OUTER UNION based on the same (Name, Ssn)
combination only, we should rename the Department attribute in each table to reflect
that they have different meanings and designate them as not being part of the
union-compatible attributes. For example, we could rename the attributes as
MajorDept in STUDENT and WorkDept in INSTRUCTOR.

8.5 Examples of Queries in Relational Algebra

The following are additional examples to illustrate the use of the relational alge-
bra operations. All examples refer to the database in Figure 5.6. In general, the
same query can be stated in numerous ways using the various operations. We will
state each query in one way and leave it to the reader to come up with equivalent
formulations.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

RESEARCH_DEPT ¢~ Gpname—‘Research(DEPARTMENT)
RESEARCH_EMPS <« (RESEARCH_DEPT ™ pumber—pnoEMPLOYEE)
RESULT ¢— Tlename, Lname, Address(RESEARCH_EM PS)

As a single in-line expression, this query becomes:

7'[:Fname, Lname, Address (GDnamez‘Research’(DEPARTMENT > Dnumber:Dno(EMPLOYEE))

""Note that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are afl the com-
mon attributes of the two relations.

265
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This query could be specified in other ways; for example, the order of the JOIN
and SELECT operations could be reversed, or the JOIN could be replaced by a
NATURAL JOIN after renaming one of the join attributes to match the other join
attribute name.

Query 2. For every project located in ‘Stafford, list the project number, the con-

trolling department number, and the department manager’s last name, address,
and birth date.

STAFFORD_PROJS ¢— Gpiocation=stafford(PROJECT)

CONTR_DEPTS <« (STAFFORD_PROJS ™ pum—pnumber DEPARTMENT)
PROJ_DEPT_MGRS ¢ (CONTR_DEPTS ™ g, ssn=ssneMPLOYEE)
RESULT « nPnumber, Dnum, Lname, Address, Bdate(PROJ_DEPT_MGRS)

In this example, we first select the projects located in Stafford, then join them with
their controlling departments, and then join the result with the department manag-
ers. Finally, we apply a project operation on the desired attributes.

Query 3. Find the names of employees who work on all the projects controlled
by department number 5.

DEPT5_PROJS « p(Pno)(nPnumber(GDnum:5(PROJECT)))
EMP_PROJ <~ P(sen, pro)(TiEssn, Pro( WORKS_ON))
RESULT_EMP_SSNS <« EMP_PROJ + DEPT5_PROIJS
RESULT < Tliname, Frame(RESULT_EMP_SSNS * EMPLOYEE)

In this query, we first create a table DEPT5_PROJS that contains the project
numbers of all projects controlled by department 5. Then we create a table
EMP_PROJ that holds (Ssn, Pno) tuples, and apply the division operation. Notice
that we renamed the attributes so that they will be correctly used in the division
operation. Finally, we join the result of the division, which holds only Ssn val-
ues, with the EMPLOYEE table to retrieve the Fname, Lname attributes from
EMPLOYEE.

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith;, either as a worker or as a manager of the department
that controls the project.

SMITHS(Essn) < Tse, (Gl namesmitiy(EMPLOYEE))

SMITH_WORKER_PROJS ¢— Tip,,(WORKS_ON * SMITHS)

MGRS < T name, Drumber(EMPLOYEE X s _yigr <s"DEPARTMENT)
SMITH_MANAGED_DEPTS(Dnum) <— Tonumber (Otnamesmity(MGRS))
SMITH_MGR_PROJS(Pno) < Tpyumber(SMITH_MANAGED_DEPTS * PROJECT)
RESULT <« (SMITH_WORKER_PROJS U SMITH_MGR_PROJS)

In this query, we retrieved the project numbers for projects that involve an employee
named Smith as a worker in SMITH_WORKER_PROJS. Then we retrieved the proj-
ect numbers for projects that involve an employee named Smith as manager of the
department that controls the project in SMITH_MGR_PROJS. Finally, we applied the
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UNION operation on SMITH_WORKER_PROJS and SMITH_MGR_PROJS. As a single
in-line expression, this query becomes:

TlPno (WORKS_ON M Essn=Ssn (TESsn (GLname:‘Smith’(EMPLOYEE))) U Tpno

((Tchumber (GLnamez‘Smith’(nLname, Dnumber(EMPLOYEE))) >
Ssn:MgrﬁssnDEPARTMENT)) M Dnum-ber:DnumPROJECT)

Query 5. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational
algebra. We have to use the AGGREGATE FUNCTION operation with the COUNT
aggregate function. We assume that dependents of the same employee have
distinct Dependent_name values.

T1(Ssn, No_of_dependents)<— gssn S cOUNT Dependent_name(DEPENDENT)

T2 « GNofoffdependents>2(T1)
RESULT <= Tt name, Frame( T2 * EMPLOYEE)

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE)
operation.

ALL_EMPS ¢ Tts,,(EMPLOYEE)

EMPS_WITH_DEPS(Ssn) < Tig.s,(DEPENDENT)
EMPS_WITHOUT_DEPS « (ALL_EMPS — EMPS_WITH_DEPS)
RESULT ¢~ T ame, Fame(EMPS_WITHOUT _DEPS * EMPLOYEE)

We first retrieve a relation with all employee Ssns in ALL_EMPS. Then we create
a table with the Ssns of employees who have at least one dependent in
EMPS_WITH_DEPS. Then we apply the SET DIFFERENCE operation to retrieve
employees Ssns with no dependents in EMPS_WITHOUT_DEPS, and finally join
this with EMPLOYEE to retrieve the desired attributes. As a single in-line expres-
sion, this query becomes:

TELname, Fname((nSsn(EMPLOYEE) - pSsn(nEssn(DEPENDENT))) * EMPLOYEE)

Query 7. List the names of managers who have at least one dependent.

MGRS(Ssn) <~ Tyg: ssn(DEPARTMENT)
EMPS_WITH_DEPS(Ssn) ¢— Tgs,(DEPENDENT)
MGRS_WITH_DEPS < (MGRS N EMPS_WITH_DEPS)
RESULT < T name, Fname(MGRS_WITH_DEPS * EMPLOYEE)

In this query, we retrieve the Ssns of managers in MGRS, and the Ssns of employ-
ees with at least one dependent in EMPS_WITH_DEPS, then we apply the SET
INTERSECTION operation to get the Ssns of managers who have at least one
dependent.

As we mentioned earlier, the same query can be specified in many different ways in
relational algebra. In particular, the operations can often be applied in various
orders. In addition, some operations can be used to replace others; for example, the
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INTERSECTION operation in Q7 can be replaced by a NATURAL JOIN. As an exercise,
try to do each of these sample queries using different operations.'* We showed how to
write queries as single relational algebra expressions for queries Q1, Q4, and Q6. Try
to write the remaining queries as single expressions. In Chapters 6 and 7 and in Sec-
tions 8.6 and 8.7, we show how these queries are written in other relational languages.

8.6 The Tuple Relational Calculus

In this and the next section, we introduce another formal query language for the
relational model called relational calculus. This section introduces the language
known as tuple relational calculus, and Section 8.7 introduces a variation called
domain relational calculus. In both variations of relational calculus, we write one
declarative expression to specify a retrieval request; hence, there is no description
of how, or in what order, to evaluate a query. A calculus expression specifies what is
to be retrieved rather than how to retrieve it. Therefore, the relational calculus is
considered to be a nonprocedural language. This differs from relational algebra,
where we must write a sequence of operations to specify a retrieval request in a par-
ticular order of applying the operations; thus, it can be considered as a procedural
way of stating a query. It is possible to nest algebra operations to form a single
expression; however, a certain order among the operations is always explicitly spec-
ified in a relational algebra expression. This order also influences the strategy for
evaluating the query. A calculus expression may be written in different ways, but
the way it is written has no bearing on how a query should be evaluated.

It has been shown that any retrieval that can be specified in the basic relational alge-
bra can also be specified in relational calculus, and vice versa; in other words, the
expressive power of the languages is identical. This led to the definition of the con-
cept of a relationally complete language. A relational query language L is considered
relationally complete if we can express in L any query that can be expressed in
relational calculus. Relational completeness has become an important basis for
comparing the expressive power of high-level query languages. However, as we saw
in Section 8.4, certain frequently required queries in database applications cannot
be expressed in basic relational algebra or calculus. Most relational query languages
are relationally complete but have more expressive power than relational algebra or
relational calculus because of additional operations such as aggregate functions,
grouping, and ordering. As we mentioned in the introduction to this chapter, the
relational calculus is important for two reasons. First, it has a firm basis in mathe-
matical logic. Second, the standard query language (SQL) for RDBMSs has its basic
foundation in the tuple relational calculus.

Our examples refer to the database shown in Figures 5.6 and 5.7. We will use the
same queries that were used in Section 8.5. Sections 8.6.6, 8.6.7, and 8.6.8 discuss
dealing with universal quantifiers and safety of expression issues. Students inter-
ested in a basic introduction to tuple relational calculus may skip these sections.

"2When queries are optimized (see Chapters 18 and 19), the system will choose a particular sequence
of operations that corresponds to an execution strategy that can be executed efficiently.
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8.6.1 Tuple Variables and Range Relations

The tuple relational calculus is based on specifying a number of tuple variables.
Each tuple variable usually ranges over a particular database relation, meaning that
the variable may take as its value any individual tuple from that relation. A simple
tuple relational calculus query is of the form:

{t | COND(#)}

where t is a tuple variable and COND(¢) is a conditional (Boolean) expression
involving t that evaluates to either TRUE or FALSE for different assignments of
tuples to the variable t. The result of such a query is the set of all tuples ¢ that evalu-
ate COND(¢) to TRUE. These tuples are said to satisfy COND(¢). For example, to find
all employees whose salary is above $50,000, we can write the following tuple calcu-
lus expression:

{t | EMPLOYEE(t) AND t.Salary>50000}

The condition EMPLOYEE(?) specifies that the range relation of tuple variable ¢ is
EMPLOYEE. Each EMPLOYEE tuple ¢ that satisfies the condition t.Salary>50000 will
be retrieved. Notice that t.Salary references attribute Salary of tuple variable #; this
notation resembles how attribute names are qualified with relation names or aliases
in SQL, as we saw in Chapter 6. In the notation of Chapter 5, t.Salary is the same as
writing t[Salary].

The previous query retrieves all attribute values for each selected EMPLOYEE tuple
t. To retrieve only some of the attributes—say, the first and last names—we write

t.Fname, t.Lname | EMPLOYEE(#) AND ¢.Salary>50000}

Informally, we need to specify the following information in a tuple relational calcu-
lus expression:

u For each tuple variable ¢, the range relation R of t. This value is specified by
a condition of the form R(t). If we do not specify a range relation, then the
variable ¢ will range over all possible tuples “in the universe” as it is not
restricted to any one relation.

B A condition to select particular combinations of tuples. As tuple variables
range over their respective range relations, the condition is evaluated for
every possible combination of tuples to identify the selected combinations
for which the condition evaluates to TRUE.

B A set of attributes to be retrieved, the requested attributes. The values of
these attributes are retrieved for each selected combination of tuples.

Before we discuss the formal syntax of tuple relational calculus, consider another query.

Query 0. Retrieve the birth date and address of the employee (or employees)
whose name is John B. Smith.

Q0: {t.Bdate, t.Address | EMPLOYEE(¢) AND t.Fname="‘John’ AND ¢.Minit="B’
AND t.Lname="‘Smith’}
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In tuple relational calculus, we first specify the requested attributes ¢.Bdate and
t.Address for each selected tuple ¢. Then we specify the condition for selecting a tuple
following the bar (|)—namely, that ¢ be a tuple of the EMPLOYEE relation whose
Fname, Minit, and Lname attribute values are ‘John’, ‘B’, and ‘Smith’, respectively.

8.6.2 Expressions and Formulas in Tuple Relational Calculus
A general expression of the tuple relational calculus is of the form
{t1-4), 1y Ak o s tAyy | COND(EL, g, ooy by B 1y b2 -oos b))}

where 1, by, ..., ty, byyts ... > Eyem are tuple variables, each A; is an attribute of the
relation on which ¢, ranges, and COND is a condition or formula'? of the tuple rela-
tional calculus. A formula is made up of predicate calculus atoms, which can be one
of the following:

1. An atom of the form R(t;), where R is a relation name and ¢ is a tuple vari-
able. This atom identifies the range of the tuple variable t; as the relation
whose name is R. It evaluates to TRUE if ¢; is a tuple in the relation R, and
evaluates to FALSE otherwise.

2. An atom of the form #.A op t,.B, where op is one of the comparison opera-
tors in the set {=, <, <, >, >, #}, t; and {; are tuple variables, A is an attribute
of the relation on which ¢; ranges, and B is an attribute of the relation on
which ¢; ranges.

3. An atom of the form #,.A op c or c op ¢;.B, where op is one of the comparison
operators in the set {=, <, <, >, >, #}, t;and tjare tuple variables, A is an attri-
bute of the relation on which ¢; ranges, B is an attribute of the relation on
which tj ranges, and c is a constant value.

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-
nation of tuples; this is called the truth value of an atom. In general, a tuple variable
t ranges over all possible tuples in the universe. For atoms of the form R(¢), if ¢ is
assigned to a tuple that is a member of the specified relation R, the atom is TRUE;
otherwise, it is FALSE. In atoms of types 2 and 3, if the tuple variables are assigned
to tuples such that the values of the specified attributes of the tuples satisfy the con-
dition, then the atom is TRUE.

A formula (Boolean condition) is made up of one or more atoms connected via
the logical operators AND, OR, and NOT and is defined recursively by Rules 1 and 2
as follows:

B Rule I: Every atom is a formula.

B Rule 2: If F; and F, are formulas, then so are (F; AND F,), (F; OR F,), NOT
(Fp), and NOT (F,). The truth values of these formulas are derived from their
component formulas F; and F, as follows:

8Also called a well-formed formula, or WFF, in mathematical logic.
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a. (F; AND F,) is TRUE if both F; and F, are TRUE; otherwise, it is FALSE.
b. (F; OR F,) is FALSE if both F; and F, are FALSE; otherwise, it is TRUE.
c. NOT (F) is TRUE if F; is FALSE; it is FALSE if F; is TRUE.
d. NOT (F,) is TRUE if F, is FALSE; it is FALSE if F, is TRUE.

8.6.3 The Existential and Universal Quantifiers

In addition, two special symbols called quantifiers can appear in formulas; these
are the universal quantifier (V) and the existential quantifier (3). Truth values for
formulas with quantifiers are described in Rules 3 and 4 below; first, however, we
need to define the concepts of free and bound tuple variables in a formula. Infor-
mally, a tuple variable ¢ is bound if it is quantified, meaning that it appears in an
(31) or (V1) clause; otherwise, it is free. Formally, we define a tuple variable in a
formula as free or bound according to the following rules:

B An occurrence of a tuple variable in a formula F that is an atom is free in F.

B An occurrence of a tuple variable ¢ is free or bound in a formula made up of
logical connectives—(F; AND F,), (F; OR F,), NOT(F}), and NOT(F,)—
depending on whether it is free or bound in F or F, (if it occurs in either).
Notice that in a formula of the form F = (F; AND F,) or F = (F] OR F,), a
tuple variable may be free in F; and bound in F,, or vice versa; in this case,
one occurrence of the tuple variable is bound and the other is free in F.

= All free occurrences of a tuple variable ¢ in F are bound in a formula F’ of the
form F'= (3t)(F) or F' = (Vt)(F). The tuple variable is bound to the quanti-
fier specified in F’. For example, consider the following formulas:

Fy: d.Dname = ‘Research’
F5: (3t)(d.Dnumber = £.Dno)
F3: (Vd)(d.Mgr_ssn = ‘333445555)

The tuple variable d is free in both F; and F,, whereas it is bound to the (V) quanti-
fier in F3. Variable ¢ is bound to the (3) quantifier in F,.

We can now give Rules 3 and 4 for the definition of a formula we started earlier:

B Rule 3: If F is a formula, then so is (3¢)(F), where t is a tuple variable. The
formula (3¢)(F) is TRUE if the formula F evaluates to TRUE for some (at least
one) tuple assigned to free occurrences of ¢ in F; otherwise, (3¢)(F) is FALSE.

B Rule 4: If F is a formula, then so is (V)(F), where ¢ is a tuple variable. The for-
mula (Vt)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in the
universe) assigned to free occurrences of t in F; otherwise, (V)(F) is FALSE.

The (3) quantifier is called an existential quantifier because a formula (3#)(F) is
TRUE if there exists some tuple that makes F TRUE. For the universal quantifier,
(V1)(F) is TRUE if every possible tuple that can be assigned to free occurrences of
tin F is substituted for t, and F is TRUE for every such substitution. It is called the
universal or for all quantifier because every tuple in the universe of tuples must
make F TRUE to make the quantified formula TRUE.
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8.6.4 Sample Queries in Tuple Relational Calculus

We will use some of the same queries from Section 8.5 to give a flavor of how the
same queries are specified in relational algebra and in relational calculus. Notice
that some queries are easier to specify in the relational algebra than in the relational
calculus, and vice versa.

Query 1. List the name and address of all employees who work for the ‘Research’
department.

Q1: {t.Fname, t.Lname, t.Address | EMPLOYEE(¢) AND (3d)(DEPARTMENT(d)
AND d.Dname="Research’ AND d.Dnumber=¢t.Dno)}

The only free tuple variables in a tuple relational calculus expression should be those
that appear to the left of the bar (|). In Q1, ¢ is the only free variable; it is then bound
successively to each tuple. If a tuple satisfies the conditions specified after the bar in
Q1, the attributes Fname, Lname, and Address are retrieved for each such tuple. The
conditions EMPLOYEE(t) and DEPARTMENT(d) specify the range relations for ¢
and d. The condition d.Dname = ‘Research’ is a selection condition and corre-
sponds to a SELECT operation in the relational algebra, whereas the condition
d.Dnumber = £.Dno is a join condition and is similar in purpose to the (INNER) JOIN
operation (see Section 8.3).

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, birth
date, and address.

Q2: {p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p) AND
EMPLOYEE(m) AND p.Plocation="Stafford’ AND ((3d)(DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=1.Ssn))}

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the
existential quantifier. The query condition is evaluated for every combination of
tuples assigned to p and m, and out of all possible combinations of tuples to which
p and m are bound, only the combinations that satisfy the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to
specify Q8—for each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor—we specify two tuple vari-
ables e and s that both range over the EMPLOYEE relation:

Q8: {e.Fname, e.Lname, s.Fname, s.Lname | EMPLOYEE(e) AND EMPLOYEE(s)
AND e.Super_ssn=s.Ssn}

Query 3. List the name of each employee who works on some project controlled
by department number 5. This is a variation of Q3 in which all is changed to
some. In this case we need two join conditions and two existential quantifiers.

Q0”: {e.Lname, e.Fname | EMPLOYEE(e) AND ((3x)(3w)(PROJECT(x) AND
WORKS_ON(w) AND x.Dnum=5 AND w.Essn=e.Ssn AND
x.Pnumber=w.Pno))}
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Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as manager of the controlling
department for the project.

04: { p.Pnumber | PROJECT(p) AND (((Je)(3w)(EMPLOYEE(e)
AND WORKS_ON(w) AND w.Pno=p.Pnumber
AND e.Lname=‘Smith’ AND e.Ssn=w.Essn) )
OR
((3m)(3d)(EMPLOYEE(11) AND DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=m.Ssn
AND m.Lname="Smith’)))}

Compare this with the relational algebra version of this query in Section 8.5. The
UNION operation in relational algebra can usually be substituted with an OR con-
nective in relational calculus.

8.6.5 Notation for Query Graphs

In this section, we describe a notation that has been proposed to represent relational
calculus queries that do not involve complex quantification in a graphical form.
These types of queries are known as select-project-join queries because they only
involve these three relational algebra operations. The notation may be expanded to
more general queries, but we do not discuss these extensions here. This graphical
representation of a query is called a query graph. Figure 8.13 shows the query graph
for Q2. Relations in the query are represented by relation nodes, which are displayed
as single circles. Constant values, typically from the query selection conditions, are
represented by constant nodes, which are displayed as double circles or ovals. Selec-
tion and join conditions are represented by the graph edges (the lines that connect
the nodes), as shown in Figure 8.13. Finally, the attributes to be retrieved from each
relation are displayed in square brackets above each relation.

The query graph representation does not indicate a particular order to specify which
operations to perform first, and is hence a more neutral representation of a select-
project-join query than the query tree representation (see Section 8.3.5), where the
order of execution is implicitly specified. There is only a single query graph corre-
sponding to each query. Although some query optimization techniques were based
on query graphs, it is now generally accepted that query trees are preferable because,

[P.Pnumber,P.Dnum] [E.Lname,E.address,E.Bdate]

P.Dnum=D.Dnumber s D.Mgr_ssn=E.Ssn
© ®

P.Plocation="'Stafford’

Figure 8.13
Query graph for Q2.
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in practice, the query optimizer needs to show the order of operations for query
execution, which is not possible in query graphs.

In the next section we discuss the relationship between the universal and existential
quantifiers and show how one can be transformed into the other.

8.6.6 Transforming the Universal and Existential Quantifiers

We now introduce some well-known transformations from mathematical logic that
relate the universal and existential quantifiers. It is possible to transform a universal
quantifier into an existential quantifier, and vice versa, to get an equivalent expres-
sion. One general transformation can be described informally as follows: Trans-
form one type of quantifier into the other with negation (preceded by NOT); AND
and OR replace one another; a negated formula becomes unnegated; and an un-
negated formula becomes negated. Some special cases of this transformation can be
stated as follows, where the = symbol stands for equivalent to:

(Vx) (P(x)) =NOT (3x) (NOT (P(x)))

(3x) (P(x)) = NOT (Vx) (NOT (P(x)))

(Vx) (P(x) AND Q(x)) = NOT (3x) (NOT (P(x)) OR NOT (Q(x)))
(Vx) (P(x) OR Q(x)) =NOT (dx) (NOT (P(x)) AND NOT (Q(x)))
(3x) (P(x)) OR Q(x)) = NOT (Vx) (NOT (P(x)) AND NOT (Q(x)))
(3x) (P(x) AND Q(x)) = NOT (Vx) (NOT (P(x)) OR NOT (Q(x)))

Notice also that the following is TRUE, where the = symbol stands for implies:

(Vx)(P(x)) = (Fx)(P(x))
NOT (3x)(P(x)) = NOT (Vx)(P(x))

8.6.7 Using the Universal Quantifier in Queries

Whenever we use a universal quantifier, it is quite judicious to follow a few rules to
ensure that our expression makes sense. We discuss these rules with respect to the
query Q3.

Query 3. List the names of employees who work on all the projects controlled
by department number 5. One way to specify this query is to use the universal
quantifier as shown:

Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND ((Vx)(NOT(PROJECT(x)) OR NOT
(x.Dnum=5) OR ((Iw)(WORKS_ON(w) AND w.Essn=e.Ssn AND
x.Pnumber=w.Pno))))}

We can break up Q3 into its basic components as follows:

Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND F'}
F = ((Vx)(NOT(PROJECT(x)) OR Fy))
Fl = NOT(x.Dnum=5) OR F2
F, = ((3w)(WORKS_ON(w) AND w.Essn=e.Ssn
AND x.Pnumber=w.Pno))
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We want to make sure that a selected employee e works on all the projects con-
trolled by department 5, but the definition of universal quantifier says that to
make the quantified formula TRUE, the inner formula must be TRUE for all tuples
in the universe. The trick is to exclude from the universal quantification all tuples
that we are not interested in by making the condition TRUE for all such tuples.
This is necessary because a universally quantified tuple variable, such as x in Q83,
must evaluate to TRUE for every possible tuple assigned to it to make the quantified
formula TRUE.

The first tuples to exclude (by making them evaluate automatically to TRUE) are
those that are not in the relation R of interest. In Q83, using the expression
NOT(PROJECT(x)) inside the universally quantified formula evaluates to TRUE all
tuples x that are not in the PROJECT relation. Then we exclude the tuples we are not
interested in from R itself. In Q3, using the expression NOT(x.Dnum=5) evaluates to
TRUE all tuples x that are in the PROJECT relation but are not controlled by depart-
ment 5. Finally, we specify a condition F, that must hold on all the remaining tuples
in R. Hence, we can explain Q8 as follows:

1. For the formula F’' = (Vx)(F) to be TRUE, we must have the formula F be
TRUE for all tuples in the universe that can be assigned to x. However, in Q3
we are only interested in F being TRUE for all tuples of the PROJECT relation
that are controlled by department 5. Hence, the formula F is of the form
(NOT(PROJECT(x)) OR F;). The ‘NOT (PROJECT(x)) OR ...” condition is
TRUE for all tuples not in the PROJECT relation and has the effect of elimi-
nating these tuples from consideration in the truth value of F;. For every
tuple in the PROJECT relation, F; must be TRUE if F’ is to be TRUE.

2. Using the same line of reasoning, we do not want to consider tuples in the
PROJECT relation that are not controlled by department number 5, since we
are only interested in PROJECT tuples whose Dnum=5. Therefore, we can
write:

IF (x.Dnum=5) THEN F,
which is equivalent to
(NOT (x.Dnum=5) OR F,)

3. Formula Fj, hence, is of the form NOT(x.Dnum=5) OR F,. In the context of
Q3, this means that, for a tuple x in the PROJECT relation, either its Dnum#=5
or it must satisfy F,.

4. Finally, F, gives the condition that we want to hold for a selected EMPLOYEE
tuple: that the employee works on every PROJECT tuple that has not been
excluded yet Such employee tuples are selected by the query.

In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e:
For every tuple x in the PROJECT relation with x.Dnum=5, there must exist a tuple
w in WORKS_ON such that w.Essn=e.Ssn and w.Pno=x.Pnumber. This is equivalent
to saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5.
(Whew!)
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Using the general transformation from universal to existential quantifiers given in
Section 8.6.6, we can rephrase the query in Q3 as shown in Q3A, which uses a
negated existential quantifier instead of the universal quantifier:

Q3A: {e.Lname, e.Fname | EMPLOYEE(e) AND (NOT (dx) (PROJECT(x) AND
(x.Dnum=5) and (NOT (Iw)(WORKS_ON(w) AND w.Essn=e.Ssn
AND x.Pnumber=w.Pno))))}

We now give some additional examples of queries that use quantifiers.
Query 6. List the names of employees who have no dependents.

Q6: {e.Fname, e.Lname | EMPLOYEE(e) AND (NOT (dd)(DEPENDENT(d)
AND e.Ssn=d.Essn))}

Using the general transformation rule, we can rephrase Q6 as follows:

06A: {e.Fname, e.Lname | EMPLOYEE(e) AND ((Vd)(NOT(DEPENDENT(d))
OR NOT(e.Ssn=d.Essn)))}

Query 7. List the names of managers who have at least one dependent.

Q7: {e.Fname, e.Lname | EMPLOYEE(e) AND ((3d)(3p)(DEPARTMENT(d)
AND DEPENDENT(p) AND e.Ssn=d.Mgr_ssn AND p.Essn=e.Ssn))}

This query is handled by interpreting managers who have at least one dependent as
managers for whom there exists some dependent.

8.6.8 Safe Expressions

Whenever we use universal quantifiers, existential quantifiers, or negation of predi-
cates in a calculus expression, we must make sure that the resulting expression
makes sense. A safe expression in relational calculus is one that is guaranteed to
yield a finite number of tuples as its result; otherwise, the expression is called unsafe.
For example, the expression

{t | NOT (EMPLOYEE(%))}

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples,
which are infinitely numerous. If we follow the rules for Q3 discussed earlier, we
will get a safe expression when using universal quantifiers. We can define safe
expressions more precisely by introducing the concept of the domain of a tuple
relational calculus expression: This is the set of all values that either appear as
constant values in the expression or exist in any tuple in the relations referenced
in the expression. For example, the domain of {f | NOT(EMPLOYEE(¢))} is the set
of all attribute values appearing in some tuple of the EMPLOYEE relation (for any
attribute). The domain of the expression Q3A would include all values appearing
in EMPLOYEE, PROJECT, and WORKS_ON (unioned with the value 5 appearing in
the query itself).

An expression is said to be safe if all values in its result are from the domain of the
expression. Notice that the result of {t | NOT(EMPLOYEE(t))} is unsafe, since it will,
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in general, include tuples (and hence values) from outside the EMPLOYEE relation;
such values are not in the domain of the expression. All of our other examples are
safe expressions.

8.7 The Domain Relational Calculus

There is another type of relational calculus called the domain relational calculus, or
simply domain calculus. Historically, while SQL (see Chapters 6 and 7), which was
based on tuple relational calculus, was being developed by IBM Research at San
Jose, California, another language called QBE (Query-By-Example), which is
related to domain calculus, was being developed almost concurrently at the IBM
T. J. Watson Research Center in Yorktown Heights, New York. The formal specifi-
cation of the domain calculus was proposed after the development of the QBE lan-
guage and system.

Domain calculus differs from tuple calculus in the type of variables used in formu-
las: Rather than having variables range over tuples, the variables range over single
values from domains of attributes. To form a relation of degree n for a query result,
we must have # of these domain variables—one for each attribute. An expression
of the domain calculus is of the form

{x1, X2 wvr X, | COND(X1, X2, ey Xpo Xy 15 X425 o0 Xpna) }

where X1, X3, ... » Xy Xp11> Xn42> -+ » Xpom are domain variables that range over
domains (of attributes), and COND is a condition or formula of the domain
relational calculus.

A formula is made up of atoms. The atoms of a formula are slightly different from
those for the tuple calculus and can be one of the following:

1. An atom of the form R(x}, x,, ... , x;), where R is the name of a relation of
degree jand each x;, 1 < i <, is a domain variable. This atom states that a list
of values of <xy, x, ..., x> must be a tuple in the relation whose name is R,
where x; is the value of the ith attribute value of the tuple. To make a domain
calculus expression more concise, we can drop the commas in a list of vari-
ables; thus, we can write:

{x1, X2, .r X, | R(1 X5 x3) AND ...}
instead of:
{x1, X2, v » X, | R(x1, X2, X3) AND ...}

2. An atom of the form x; op x;, where op is one of the comparison operators in
the set {=, <, <, >, >, #}, and x; and xj are domain variables.

3. An atom of the form x; op ¢ or ¢ op x;, where op is one of the comparison
operators in the set {=, <, <, >, >, #}, x; and x; are domain variables, and c is
a constant value.

As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of
values, called the truth values of the atoms. In case 1, if the domain variables are
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assigned values corresponding to a tuple of the specified relation R, then the atom is
TRUE. In cases 2 and 3, if the domain variables are assigned values that satisfy the
condition, then the atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms,
variables, and quantifiers, so we will not repeat the specifications for formulas here.
Some examples of queries specified in the domain calculus follow. We will use low-
ercase letters [, m, n, ... , x, y, z for domain variables.

Query 0. List the birth date and address of the employee whose name is ‘John
B. Smith’.

Qo: {u,v|(3q) 3r) Is) 3t) Fw) 3x) @y) Fz2)
(EMPLOYEE(grstuvwxyz) AND g="John’ AND r=‘B’ AND s="Smith’)}

We need ten variables for the EMPLOYEE relation, one to range over each of the
domains of attributes of EMPLOYEE in order. Of the ten variables ¢, 1, s, ... , z,
only u and v are free, because they appear to the left of the bar and hence should
not be bound to a quantifier. We first specify the requested attributes, Bdate and
Address, by the free domain variables u for BDATE and v for ADDRESS. Then we
specify the condition for selecting a tuple following the bar (])—namely, that the
sequence of values assigned to the variables grstuvwxyz be a tuple of the EMPLOYEE
relation and that the values for g (Fname), r (Minit), and s (Lname) be equal to
‘Johr’, ‘B’, and ‘Smith’, respectively. For convenience, we will quantify only those
variables actually appearing in a condition (these would be g, r, and s in Q0) in the
rest of our examples.

An alternative shorthand notation, used in QBE, for writing this query is to assign
the constants John’, ‘B’, and ‘Smith’ directly as shown in QOA. Here, all variables
not appearing to the left of the bar are implicitly existentially quantified:'”

QOA: {u, v| EMPLOYEE(‘John’, ‘B’, ‘Smith’, ¢, u, v, w, x, ¥, 2)}

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

a1: {g,s, v| (Fz) (3) (Im) (EMPLOYEE(grstuvwxyz) AND
DEPARTMENT(Imno) AND [=‘Research’ AND m=z)}

A condition relating two domain variables that range over attributes from two rela-
tions, such as m = z in Q1, is a join condition, whereas a condition that relates a
domain variable to a constant, such as [ = ‘Research’, is a selection condition.

Query 2. For every project located in ‘Stafford’, list the project number, the con-
trolling department number, and the department manager’s last name, birth
date, and address.

"4Quantifying only the domain variables actually used in conditions and specifying a predicate such as
EMPLOYEE(grstuvwxyz) without separating domain variables with commas is an abbreviated notation
used for convenience; it is not the correct formal notation.

15Again, this is not a formally accurate notation.



02: {i, k, s, u, v | (3j)(3m)(In)(3t)(PROJECT(hijk) AND
EMPLOYEE(grstuvwxyz) AND DEPARTMENT(/mno) AND k=m AND
n=t AND j="Stafford’)}

Query 6. List the names of employees who have no dependents.

Q6: {q, s | (3t)(EMPLOYEE(grstuvwxyz) AND
(NOT(31)(DEPENDENT(Imnop) AND t=1)))}

Q6 can be restated using universal quantifiers instead of the existential quantifiers,
as shown in Q6A:

06A: {q, s | (3t)(EMPLOYEE(grstuvwxyz) AND
((V1)(NOT(DEPENDENT(Imnop)) OR NOT(t=I))))}

Query 7. List the names of managers who have at least one dependent.

Q7: {s, q | (31)(3j)(3)(EMPLOYEE(grstuvwxyz) AND DEPARTMENT (hijk)
AND DEPENDENT(lmnop) AND t=j AND I=t)}

As we mentioned earlier, it can be shown that any query that can be expressed in
the basic relational algebra can also be expressed in the domain or tuple relational
calculus. Also, any safe expression in the domain or tuple relational calculus can be
expressed in the basic relational algebra.

The QBE language was based on the domain relational calculus, although this was
realized later, after the domain calculus was formalized. QBE was one of the first
graphical query languages with minimum syntax developed for database systems. It
was developed at IBM Research and is available as an IBM commercial product as
part of the Query Management Facility (QMF) interface option to DB2. The basic
ideas used in QBE have been applied in several other commercial products. Because
of its important place in the history of relational languages, we have included an
overview of QBE in Appendix C.

8.8 Summary

In this chapter we presented two formal languages for the relational model of data.
They are used to manipulate relations and produce new relations as answers to que-
ries. We discussed the relational algebra and its operations, which are used to spec-
ify a sequence of operations to specify a query. Then we introduced two types of
relational calculi called tuple calculus and domain calculus.

In Sections 8.1 through 8.3, we introduced the basic relational algebra operations
and illustrated the types of queries for which each is used. First, we discussed the
unary relational operators SELECT and PROJECT, as well as the RENAME operation.
Then, we discussed binary set theoretic operations requiring that relations on
which they are applied be union (or type) compatible; these include UNION,
INTERSECTION, and SET DIFFERENCE. The CARTESIAN PRODUCT operation is a
set operation that can be used to combine tuples from two relations, producing
all possible combinations. It is rarely used in practice; however, we showed how

8.8 Summary
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CARTESIAN PRODUCT followed by SELECT can be used to define matching tuples
from two relations and leads to the JOIN operation. Different JOIN operations called
THETA JOIN, EQUIOIN, and NATURAL JOIN were introduced. Query trees were intro-
duced as a graphical representation of relational algebra queries, which can also be used
as the basis for internal data structures that the DBMS can use to represent a query.

We discussed some important types of queries that cannot be stated with the basic
relational algebra operations but are important for practical situations. We intro-
duced GENERALIZED PROJECTION to use functions of attributes in the projection
list and the AGGREGATE FUNCTION operation to deal with aggregate types of statis-
tical requests that summarize the information in the tables. We discussed recursive
queries, for which there is no direct support in the algebra but which can be han-
dled in a step-by-step approach, as we demonstrated. Then we presented the OUTER
JOIN and OUTER UNION operations, which extend JOIN and UNION and allow all
information in source relations to be preserved in the result.

The last two sections described the basic concepts behind relational calculus, which
is based on the branch of mathematical logic called predicate calculus. There are
two types of relational calculi: (1) the tuple relational calculus, which uses tuple
variables that range over tuples (rows) of relations, and (2) the domain relational
calculus, which uses domain variables that range over domains (columns of rela-
tions). In relational calculus, a query is specified in a single declarative statement,
without specifying any order or method for retrieving the query result. Hence, rela-
tional calculus is often considered to be a higher-level declarative language than the
relational algebra, because a relational calculus expression states what we want to
retrieve regardless of how the query may be executed.

We introduced query graphs as an internal representation for queries in relational
calculus. We also discussed the existential quantifier (3) and the universal quanti-
fier (V). We discussed the problem of specifying safe queries whose results are
finite. We also discussed rules for transforming universal into existential quantifi-
ers, and vice versa. It is the quantifiers that give expressive power to the relational
calculus, making it equivalent to the basic relational algebra. There is no analog to
grouping and aggregation functions in basic relational calculus, although some
extensions have been suggested.

Review Questions
8.1. List the operations of relational algebra and the purpose of each.

8.2. What is union compatibility? Why do the UNION, INTERSECTION, and
DIFFERENCE operations require that the relations on which they are
applied be union compatible?

8.3. Discuss some types of queries for which renaming of attributes is necessary
in order to specify the query unambiguously.

8.4. Discuss the various types of inner join operations. Why is theta join required?



8.5.

8.6.
8.7.

8.8.

What role does the concept of foreign key play when specifying the most
common types of meaningful join operations?

What is the FUNCTION operation? For what is it used?

How are the OUTER JOIN operations different from the INNER JOIN opera-
tions? How is the OUTER UNION operation different from UNION?

In what sense does relational calculus differ from relational algebra, and in
what sense are they similar?

8.9. How does tuple relational calculus differ from domain relational calculus?

8.10. Discuss the meanings of the existential quantifier (3) and the universal
quantifier (V).

8.11. Define the following terms with respect to the tuple calculus: tuple variable,
range relation, atom, formula, and expression.

8.12. Define the following terms with respect to the domain calculus: domain
variable, range relation, atom, formula, and expression.

8.13. What is meant by a safe expression in relational calculus?

8.14. When is a query language called relationally complete?

Exercises

8.15. Show the result of each of the sample queries in Section 8.5 as it would apply
to the database state in Figure 5.6.

8.16. Specity the following queries on the COMPANY relational database schema

shown in Figure 5.5 using the relational operators discussed in this chapter.
Also show the result of each query as it would apply to the database state in
Figure 5.6.

a. Retrieve the names of all employees in department 5 who work more
than 10 hours per week on the ProductX project.

b. List the names of all employees who have a dependent with the same first
name as themselves.

c. Find the names of all employees who are directly supervised by ‘Franklin
Wong'.

d. For each project, list the project name and the total hours per week (by all
employees) spent on that project.

e. Retrieve the names of all employees who work on every project.

f. Retrieve the names of all employees who do not work on any project.

g. For each department, retrieve the department name and the average sal-
ary of all employees working in that department.

h. Retrieve the average salary of all female employees.

Exercises
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J-

Find the names and addresses of all employees who work on at least one
project located in Houston but whose department has no location in
Houston.

List the last names of all department managers who have no dependents.

8.17. Consider the AIRLINE relational database schema shown in Figure 5.8, which
was described in Exercise 5.12. Specify the following queries in relational
algebra:

8.19.

a.

For each flight, list the flight number, the departure airport for the first
leg of the flight, and the arrival airport for the last leg of the flight.

List the flight numbers and weekdays of all flights or flight legs that depart
from Houston Intercontinental Airport (airport code ‘iah’) and arrive in
Los Angeles International Airport (airport code ‘lax’).

List the flight number, departure airport code, scheduled departure time,
arrival airport code, scheduled arrival time, and weekdays of all flights or
flight legs that depart from some airport in the city of Houston and arrive
at some airport in the city of Los Angeles.

List all fare information for flight number ‘co197".

Retrieve the number of available seats for flight number ‘c0197" on
2009-10-09'.

. Consider the LIBRARY relational database schema shown in Figure 8.14, which

is used to keep track of books, borrowers, and book loans. Referential integrity
constraints are shown as directed arcs in Figure 8.14, as in the notation of Fig-
ure 5.7. Write down relational expressions for the following queries:

a.

How many copies of the book titled The Lost Tribe are owned by the
library branch whose name is ‘Sharpstown’?

How many copies of the book titled The Lost Tribe are owned by each
library branch?

Retrieve the names of all borrowers who do not have any books
checked out.

For each book that is loaned out from the Sharpstown branch and whose
Due_date is today, retrieve the book title, the borrower’s name, and the
borrower’s address.

For each library branch, retrieve the branch name and the total number
of books loaned out from that branch.

Retrieve the names, addresses, and number of books checked out for all
borrowers who have more than five books checked out.

For each book authored (or coauthored) by Stephen King, retrieve the
title and the number of copies owned by the library branch whose name
is Central.

Specify the following queries in relational algebra on the database schema
given in Exercise 5.14:
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BOOK
| Book_id| Title | Publisher_name|
A“
BOOK_AUTHORS

| Book_id| Author_name|
[

PUBLISHER
| Name | Address | Phone |

BOOK_COPIES
[ Book_id| Branch_id[ No_of_copies

BOOK_LOANS

| Book_id| Branch_id| Card_no| Date_out| Due_date
|

| |
[ |
r

LIBRARY_BRANCH

| Branch_id| Branch_name| Address |
m

BORROWER Figure 8.14

| Card_no| Name | Address | Phone | A relational database
schema for a LIBRARY
database.

a. List the Order# and Ship_date for all orders shipped from Warehouse# W2.

b. List the WAREHOUSE information from which the CUSTOMER
named Jose Lopez was supplied his orders. Produce a listing: Order#,
Warehouse#.

c. Produce a listing Cname, No_of_orders, Avg_order_amt, where the middle
column is the total number of orders by the customer and the last column
is the average order amount for that customer.

d. List the orders that were not shipped within 30 days of ordering.

e. List the Order# for orders that were shipped from all warehouses that the
company has in New York.

8.20. Specity the following queries in relational algebra on the database schema
given in Exercise 5.15:

a. Give the details (all attributes of trip relation) for trips that exceeded
$2,000 in expenses.
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8.21.

8.22,

8.23.

8.24.

8.25.

b. Print the Ssns of salespeople who took trips to Honolulu.

C.

Print the total trip expenses incurred by the salesperson with SSN =
234-56-7890’.

Specify the following queries in relational algebra on the database schema
given in Exercise 5.16:

a.

List the number of courses taken by all students named John Smith in
Winter 2009 (i.e., Quarter=W09).

Produce a list of textbooks (include Course#, Book_isbn, Book_title) for
courses offered by the ‘CS’ department that have used more than two books.

List any department that has all its adopted books published by ‘Pearson
Publishing’.

Consider the two tables T1 and T2 shown in Figure 8.15. Show the results of
the following operations:

o ®

a o

o

f.

T1>™ 71 p=r24 T2
T1™ 7 g=T2p T2
T1> 7 p-r24 T2
T1™ 11 =128 T2
T1U T2

T1™ (r1.p=T2.4 AND TLR = T2.C) 12

Specify the following queries in relational algebra on the database schema in
Exercise 5.17:

a.

For the salesperson named ‘Jane Doe’, list the following information for
all the cars she sold: Serial#, Manufacturer, Sale_price.

List the Serial# and Model of cars that have no options.

Consider the NATURAL JOIN operation between SALESPERSON and
SALE. What is the meaning of a left outer join for these tables (do not
change the order of relations)? Explain with an example.

Write a query in relational algebra involving selection and one set opera-
tion and say in words what the query does.

Specify queries a, b, ¢, e, f, i, and j of Exercise 8.16 in both tuple and domain
relational calculus.

Specify queries a, b, ¢, and d of Exercise 8.17 in both tuple and domain rela-
tional calculus.

Figure 8.15
A database state for the
relations 71 and T2.

TABLE T1 TABLE T2

[Flal®] [xl8le]
10 a 5 10 b 6
15 b 8 25 ¢ 3

25 a 6 10 b b5



8.26

8.27

8.28

8.29

8.30.

8.31.

8.32.

Specify queries ¢, d, and f of Exercise 8.18 in both tuple and domain rela-
tional calculus.

In a tuple relational calculus query with # tuple variables, what would be the
typical minimum number of join conditions? Why? What is the effect of
having a smaller number of join conditions?

Rewrite the domain relational calculus queries that followed QO in Sec-
tion 8.7 in the style of the abbreviated notation of QOA, where the objective
is to minimize the number of domain variables by writing constants in place
of variables wherever possible.

Consider this query: Retrieve the Ssns of employees who work on at least
those projects on which the employee with Ssn=123456789 works. This may
be stated as (FORALL x) (IF P THEN Q), where

B x is a tuple variable that ranges over the PROJECT relation.
B P =employee with Ssn=123456789 works on project x.

B Q= employee e works on project x.

Express the query in tuple relational calculus, using the rules
m (V x)(P(x)) = NOT(Jx)(NOT(P(x))).

= (IF P THEN Q) = (NOT(P) OR Q).

Show how you can specify the following relational algebra operations in
both tuple and domain relational calculus.

64-c(R(A, B, C))

TC<A, B>(R(A, B> C))
R(A, B, C) * S(C, D, E)
R(A, B, C) U S(A, B, C)
R(A, B, C) " S(A, B, C)
R(A,B,C)=S(A, B, C)
g. R(A, B, C) x S(D, E, F)
h. R(A, B) = S(A)

=0 oo T p

Suggest extensions to the relational calculus so that it may express the fol-
lowing types of operations that were discussed in Section 8.4: (a) aggre-
gate functions and grouping; (b) OUTER JOIN operations; (c) recursive
closure queries.

A nested query is a query within a query. More specifically, a nested query is
a parenthesized query whose result can be used as a value in a number of
places, such as instead of a relation. Specify the following queries on the
database specified in Figure 5.5 using the concept of nested queries and the
relational operators discussed in this chapter. Also show the result of each
query as it would apply to the database state in Figure 5.6.

a. List the names of all employees who work in the department that has the
employee with the highest salary among all employees.

Exercises
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List the names of all employees whose supervisor’s supervisor has
‘888665555 for Ssn.

List the names of employees who make at least $10,000 more than the
employee who is paid the least in the company.

8.33. State whether the following conclusions are true or false:

a.
b.

C.

NOT (P(x) OR Q(x)) > (NOT (P(x)) AND (NOT (Q(x)))
NOT (Ix) (P(x)) > V x (NOT (P(x))
(@x) (P(x)) » V x ((P(x))

Laboratory Exercises

8.34. Specify and execute the following queries in relational algebra (RA) using
the RA interpreter on the COMPANY database schema in Figure 5.5.

8.35.

a.

b}

g.

List the names of all employees in department 5 who work more than 10
hours per week on the ProductX project.

. List the names of all employees who have a dependent with the same first

name as themselves.

List the names of employees who are directly supervised by Franklin Wong.

. List the names of employees who work on every project.

List the names of employees who do not work on any project.

List the names and addresses of employees who work on at least one
project located in Houston but whose department has no location in
Houston.

List the names of department managers who have no dependents.

Consider the following MAILORDER relational schema describing the data
for a mail order company.

PARTS(Pno, Pname, Qoh, Price, Olevel)
CUSTOMERS(Cno, Cname, Street, Zip, Phone)
EMPLOYEES(Eno, Ename, Zip, Hdate)
ZIP_CODES(Zip, City)

ORDERS(Ono, Cno, Eno, Received, Shipped)
ODETAILS(Ono, Pno, Qty)

Qoh stands for quantity on hand: the other attribute names are self-
explanatory. Specify and execute the following queries using the RA
interpreter on the MAILORDER database schema.

a.
b.

Retrieve the names of parts that cost less than $20.00.

Retrieve the names and cities of employees who have taken orders for
parts costing more than $50.00.

Retrieve the pairs of customer number values of customers who live in
the same ZIP Code.



8.36.

8.37.

Laboratory Exercises

d. Retrieve the names of customers who have ordered parts from employees
living in Wichita.

e. Retrieve the names of customers who have ordered parts costing less than
$20.00.

f. Retrieve the names of customers who have not placed an order.

g. Retrieve the names of customers who have placed exactly two orders.

Consider the following GRADEBOOK relational schema describing the data
for a grade book of a particular instructor. (Note: The attributes A, B, C,
and D of COURSES store grade cutoffs.)

CATALOG(Cno, Cititle)

STUDENTS(Sid, Fname, Lname, Minit)
COURSES(Term, Sec_no, Cno, A, B, C, D)
ENROLLS(Sid, Term, Sec_no)

Specify and execute the following queries using the RA interpreter on the
GRADEBOOK database schema.

a. Retrieve the names of students enrolled in the Automata class during the
fall 2009 term.

b. Retrieve the Sid values of students who have enrolled in CSc226 and
CSc227.

c. Retrieve the Sid values of students who have enrolled in CSc226 or
CSc227.

d. Retrieve the names of students who have not enrolled in any class.

e. Retrieve the names of students who have enrolled in all courses in the
CATALOG table.

Consider a database that consists of the following relations.

SUPPLIER(Sno, Sname)
PART(Pno, Pname)
PROJECT(Jno, Jname)
SUPPLY (Sno, Pno, Jno)

The database records information about suppliers, parts, and projects and
includes a ternary relationship between suppliers, parts, and projects. This
relationship is a many-many-many relationship. Specify and execute the fol-
lowing queries using the RA interpreter.

a. Retrieve the part numbers that are supplied to exactly two projects.

b. Retrieve the names of suppliers who supply more than two parts to
project J1’.

c. Retrieve the part numbers that are supplied by every supplier.

d. Retrieve the project names that are supplied by supplier ‘S1’ only.

e. Retrieve the names of suppliers who supply at least two different parts
each to at least two different projects.
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8.38. Specify and execute the following queries for the database in Exercise 5.16
using the RA interpreter.

a. Retrieve the names of students who have enrolled in a course that uses a
textbook published by Addison-Wesley-Longman.

b. Retrieve the names of courses in which the textbook has been changed at
least once.

c. Retrieve the names of departments that adopt textbooks published by
Addison-Wesley only.

d. Retrieve the names of departments that adopt textbooks written by
Navathe and published by Addison-Wesley.

e. Retrieve the names of students who have never used a book (in a course)
written by Navathe and published by Addison-Wesley.

8.39. Repeat Laboratory Exercises 8.34 through 8.38 in domain relational calculus
(DRC) by using the DRC interpreter.
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chapter 9

Relational Database
Design by ER- and
EER-to-Relational Mapping

This chapter discusses how to design a relational
database schema based on a conceptual schema
design. Figure 3.1 presented a high-level view of the database design process. In this
chapter we focus on the logical database design step of database design, which is
also known as data model mapping. We present the procedures to create a rela-
tional schema from an entity-relationship (ER) or an enhanced ER (EER) schema.
Our discussion relates the constructs of the ER and EER models, presented in
Chapters 3 and 4, to the constructs of the relational model, presented in Chapters 5
through 8. Many computer-aided software engineering (CASE) tools are based on
the ER or EER models, or other similar models, as we have discussed in Chapters 3
and 4. Many tools use ER or EER diagrams or variations to develop the schema
graphically and collect information about the data types and constraints, then con-
vert the ER/EER schema automatically into a relational database schema in the
DDL of a specific relational DBMS. The design tools employ algorithms similar to
the ones presented in this chapter.

We outline a seven-step algorithm in Section 9.1 to convert the basic ER model
constructs—entity types (strong and weak), binary relationships (with various
structural constraints), n-ary relationships, and attributes (simple, composite,
and multivalued)—into relations. Then, in Section 9.2, we continue the mapping
algorithm by describing how to map EER model constructs—specializa-
tion/generalization and union types (categories)—into relations. Section 9.3 sum-
marizes the chapter.
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9.1 Relational Database Design Using
ER-to-Relational Mapping

9.1.1 ER-to-Relational Mapping Algorithm

In this section we describe the steps of an algorithm for ER-to-relational mapping.
We use the COMPANY database example to illustrate the mapping procedure.
The COMPANY ER schema is shown again in Figure 9.1, and the corresponding
COMPANY relational database schema is shown in Figure 9.2 to illustrate the

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

PROJECT |

Supervisor
1

@

DEPENDENTS_OF

| DEPENDENT |

Ctame > Csen > B cate >

Relationship
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EMPLOYEE

| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary | Super_ssn| Dno |
AH |

DEPARTMENT
| Dname | Dnumber | Mgr_ssn| Mgr_start_date|

DEPT_LOCATIONS

| Dnumber | Dlocation |
1

PROJECT
| Pname | Pnumber | Plocation | Dnum
A [
WORKS_ON
| Essn | Pno | Hours |
Figure 9.2
Result of mapping the
DEPENDENT COMPANY ER schema
| Essn | Dependent_name | Sex | Bdate | Relationship into a relational database

| schema.

mapping steps. We assume that the mapping will create tables with simple single-
valued attributes. The relational model constraints defined in Chapter 5, which
include primary keys, unique keys (if any), and referential integrity constraints on
the relations, will also be specified in the mapping results.

Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type
E in the ER schema, create a relation R that includes all the simple attributes of E.
Include only the simple component attributes of a composite attribute. Choose one
of the key attributes of E as the primary key for R. If the chosen key of E is a com-
posite, then the set of simple attributes that form it will together form the primary
key of R.

If multiple keys were identified for E during the conceptual design, the information
describing the attributes that form each additional key is kept in order to specify
additional (unique) keys of relation R. Knowledge about keys is also kept for index-
ing purposes and other types of analyses.

In our example, we create the relations EMPLOYEE, DEPARTMENT, and PROJECT in
Figure 9.2 to correspond to the regular entity types EMPLOYEE, DEPARTMENT, and
PROJECT from Figure 9.1. The foreign key and relationship attributes, if any,
are not included yet; they will be added during subsequent steps. These include
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the attributes Super_ssn and Dno of EMPLOYEE, Mgr_ssn and Mgr_start_date of
DEPARTMENT, and Dnum of PROJECT. In our example, we choose Ssn, Dnumber, and
Pnumber as primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT,
respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT are
unique keys is kept for possible use later in the design.

The relations that are created from the mapping of entity types are sometimes called
entity relations because each tuple represents an entity instance. The result after
this mapping step is shown in Figure 9.3(a).

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the
ER schema with owner entity type E, create a relation R and include all simple
attributes (or simple components of composite attributes) of W as attributes of
R. In addition, include as foreign key attributes of R, the primary key attribute(s)
of the relation(s) that correspond to the owner entity type(s); this takes care of
mapping the identifying relationship type of W. The primary key of R is the
combination of the primary key(s) of the owner(s) and the partial key of the
weak entity type W, if any. If there is a weak entity type E; whose owner is also
a weak entity type Ej, then E; should be mapped before E, to determine its
primary key first.

In our example, we create the relation DEPENDENT in this step to correspond to
the weak entity type DEPENDENT (see Figure 9.3(b)). We include the primary key
Ssn of the EMPLOYEE relation—which corresponds to the owner entity type—
as a foreign key attribute of DEPENDENT; we rename it Essn, although this is not

Figure 9.3
[llustration of some
mapping steps.

(a) Entity relations
after step 1.

(a) EMPLOYEE
| Fname | Minit | Lname| Ssn | Bdate | Address | Sex | Salary |

DEPARTMENT

(b) Additional weak entity
relation after step 2.

(c) Relationship relations
after step b.

(d) Relation representing
multivalued attribute

after step 6. (b)

(c)

(d

| Dname | Dnumber |

PROJECT

| Pname | Pnumber | Plocation |

DEPENDENT

| Essn | Dependent_name | Sex | Bdate | Relationship

WORKS_ON

|Essn | Pno | Hours |

DEPT_LOCATIONS

| Dnumber | Dlocation |
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necessary. The primary key of the DEPENDENT relation is the combination {Essn,
Dependent_name}, because Dependent_name (also renamed from Name in Figure 9.1)
is the partial key of DEPENDENT.

It is common to choose the propagate (CASCADE) option for the referential trig-
gered action (see Section 6.2) on the foreign key in the relation corresponding to
the weak entity type, since a weak entity has an existence dependency on its owner
entity. This can be used for both ON UPDATE and ON DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela-
tionship type R in the ER schema, identify the relations S and T that correspond
to the entity types participating in R. There are three possible approaches: (1) the
foreign key approach, (2) the merged relationship approach, and (3) the cross-
reference or relationship relation approach. The first approach is the most useful
and should be followed unless special conditions exist, as we discuss below.

1. Foreign key approach: Choose one of the relations—S, say—and include as
a foreign key in S the primary key of T. It is better to choose an entity type
with total participation in R in the role of S. Include all the simple attributes
(or simple components of composite attributes) of the 1:1 relationship type
R as attributes of S.

In our example, we map the 1:1 relationship type MANAGES from Figure 9.1
by choosing the participating entity type DEPARTMENT to serve in the role
of S because its participation in the MANAGES relationship type is total
(every department has a manager). We include the primary key of the
EMPLOYEE relation as foreign key in the DEPARTMENT relation and rename
it to Mgr_ssn. We also include the simple attribute Start_date of the MANAGES
relationship type in the DEPARTMENT relation and rename it Mgr_start_date
(see Figure 9.2 ).

Note that it is possible to include the primary key of S as a foreign key in T
instead. In our example, this amounts to having a foreign key attribute, say
Department_managed in the EMPLOYEE relation, but it will have a NULL value
for employee tuples who do not manage a department. This would be a bad
choice, because if only 2% of employees manage a department, then 98% of
the foreign keys would be NULL in this case. Another possibility is to have
foreign keys in both relations S and T redundantly, but this creates redun-
dancy and incurs a penalty for consistency maintenance.

2. Merged relation approach: An alternative mapping of a 1:1 relationship
type is to merge the two entity types and the relationship into a single rela-
tion. This is possible when both participations are total, as this would indi-
cate that the two tables will have the exact same number of tuples at all times.

3. Cross-reference or relationship relation approach: The third option is to
set up a third relation R for the purpose of cross-referencing the primary
keys of the two relations S and T representing the entity types. As we will see,
this approach is required for binary M:N relationships. The relation R is
called a relationship relation (or sometimes a lookup table), because each
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tuple in R represents a relationship instance that relates one tuple from S
with one tuple from T. The relation R will include the primary key attributes
of S and T as foreign keys to S and T. The primary key of R will be one of the
two foreign keys, and the other foreign key will be a unique key of R. The
drawback is having an extra relation, and requiring extra join operations
when combining related tuples from the tables.

Step 4: Mapping of Binary 1:N Relationship Types. There are two possible
approaches: (1) the foreign key approach and (2) the cross-reference or relationship
relation approach. The first approach is generally preferred as it reduces the num-
ber of tables.

1. The foreign key approach: For each regular binary 1:N relationship type R,
identify the relation S that represents the participating entity type at the
N-side of the relationship type. Include as foreign key in S the primary key of
the relation T that represents the other entity type participating in R; we do
this because each entity instance on the N-side is related to at most one
entity instance on the 1-side of the relationship type. Include any simple
attributes (or simple components of composite attributes) of the 1:N rela-
tionship type as attributes of S.

To apply this approach to our example, we map the 1:N relationship types
WORKS_FOR, CONTROLS, and SUPERVISION from Figure 9.1. For
WORKS_FOR we include the primary key Dnumber of the DEPARTMENT relation
as foreign key in the EMPLOYEE relation and call it Dno. For SUPERVISION we
include the primary key of the EMPLOYEE relation as foreign key in the
EMPLOYEE relation itself—because the relationship is recursive—and call it
Super_ssn. The CONTROLS relationship is mapped to the foreign key attri-
bute Dnum of PROJECT, which references the primary key Dnumber of the
DEPARTMENT relation. These foreign keys are shown in Figure 9.2.

2. The relationship relation approach: An alternative approach is to use the
relationship relation (cross-reference) option as in the third option for
binary 1:1 relationships. We create a separate relation R whose attributes are
the primary keys of S and T, which will also be foreign keys to S and T. The
primary key of R is the same as the primary key of S. This option can be used
if few tuples in S participate in the relationship to avoid excessive NULL val-
ues in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types. In the traditional rela-
tional model with no multivalued attributes, the only option for M:N relationships
is the relationship relation (cross-reference) option. For each binary M:N rela-
tionship type R, create a new relation S to represent R. Include as foreign key attri-
butes in S the primary keys of the relations that represent the participating entity
types; their combination will form the primary key of S. Also include any simple
attributes of the M:N relationship type (or simple components of composite attri-
butes) as attributes of S. Notice that we cannot represent an M:N relationship type
by a single foreign key attribute in one of the participating relations (as we did for
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1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must create a
separate relationship relation S.

In our example, we map the M:N relationship type WORKS_ON from Figure 9.1 by
creating the relation WORKS_ON in Figure 9.2. We include the primary keys of the
PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and rename
them Pno and Essn, respectively (renaming is not required; it is a design choice).
We also include an attribute Hours in WORKS_ON to represent the Hours attribute
of the relationship type. The primary key of the WORKS_ON relation is the combi-
nation of the foreign key attributes {Essn, Pno}. This relationship relation is
shown in Figure 9.3(c).

The propagate (CASCADE) option for the referential triggered action (see Sec-
tion 4.2) should be specified on the foreign keys in the relation corresponding to the
relationship R, since each relationship instance has an existence dependency on
each of the entities it relates. This can be used for both ON UPDATE and ON DELETE.

Although we can map 1:1 or 1:N relationships in a manner similar to M:N relation-
ships by using the cross-reference (relationship relation) approach, as we discussed
earlier, this is only recommended when few relationship instances exist, in order to
avoid NULL values in foreign keys. In this case, the primary key of the relationship
relation will be only one of the foreign keys that reference the participating entity
relations. For a 1:N relationship, the primary key of the relationship relation will be
the foreign key that references the entity relation on the N-side. For a 1:1 relation-
ship, either foreign key can be used as the primary key of the relationship relation.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A,
create a new relation R. This relation R will include an attribute corresponding to A,
plus the primary key attribute K—as a foreign key in R—of the relation that repre-
sents the entity type or relationship type that has A as a multivalued attribute. The
primary key of R is the combination of A and K. If the multivalued attribute is com-
posite, we include its simple components.

In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)).
The attribute Dlocation represents the multivalued attribute LOCATIONS of
DEPARTMENT, whereas Dnumber—as foreign key—represents the primary key of the
DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of
{Dnumber, Dlocation}. A separate tuple will exist in DEPT_LOCATIONS for each loca-
tion that a department has. It is important to note that in more recent versions of
the relational model that allow array data types, the multivalued attribute can be
mapped to an array attribute rather than requiring a separate table.

The propagate (CASCADE) option for the referential triggered action (see Sec-
tion 6.2) should be specified on the foreign key in the relation R corresponding to the
multivalued attribute for both ON UPDATE and ON DELETE. We should also note
that the key of R when mapping a composite, multivalued attribute requires some
analysis of the meaning of the component attributes. In some cases, when a multi-
valued attribute is composite, only some of the component attributes are required
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to be part of the key of R; these attributes are similar to a partial key of a weak entity
type that corresponds to the multivalued attribute (see Section 3.5).

Figure 9.2 shows the COMPANY relational database schema obtained with steps 1
through 6, and Figure 5.6 shows a sample database state. Notice that we did not yet
discuss the mapping of n-ary relationship types (n > 2) because none exist in Fig-
ure 9.1 ; these are mapped in a similar way to M:N relationship types by including
the following additional step in the mapping algorithm.

Step 7: Mapping of N-ary Relationship Types. We use the relationship
relation option. For each n-ary relationship type R, where n > 2, create a new relation-
ship relation S to represent R. Include as foreign key attributes in S the primary keys
of the relations that represent the participating entity types. Also include any simple
attributes of the n-ary relationship type (or simple components of composite attri-
butes) as attributes of S. The primary key of S is usually a combination of all the
foreign keys that reference the relations representing the participating entity types.
However, if the cardinality constraints on any of the entity types E participating in
Ris 1, then the primary key of S should not include the foreign key attribute that
references the relation E’ corresponding to E (see the discussion in Section 3.9.2
concerning constraints on n-ary relationships).

Consider the ternary relationship type SUPPLY in Figure 3.17, which relates a
SUPPLIER s, PART p, and PROJECT j whenever s is currently supplying p to j; this
can be mapped to the relation SUPPLY shown in Figure 9.4, whose primary key is the
combination of the three foreign keys {Sname, Part_no, Proj_name}.

9.1.2 Discussion and Summary of Mapping
for ER Model Constructs

Table 9.1 summarizes the correspondences between ER and relational model con-
structs and constraints.

Figure 9.4
Mapping the n-ary
relationship type
SUPPLY from
Figure 3.17(a).

SUPPLIER

[ Stame [ |

PROJECT
| Pro'_name| |

4

PART

Parno] |
1

SUPPLY

_| Srgme | Proj_name| Part_no| Quantity
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Table 9.1  Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or relationship relation)
M:N relationship type Relationship relation and two foreign keys
n-ary relationship type Relationship relation and n foreign keys
Simple attribute Attribute

Composite attribute Set of simple component attributes
Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

One of the main points to note in a relational schema, in contrast to an ER
schema, is that relationship types are not represented explicitly; instead, they
are represented by having two attributes A and B, one a primary key and the
other a foreign key (over the same domain) included in two relations S and T.
Two tuples in S and T are related when they have the same value for A and B. By
using the EQUIJOIN operation (or NATURAL JOIN if the two join attributes have
the same name) over S.A and T.B, we can combine all pairs of related tuples
from S and T and materialize the relationship. When a binary 1:1 or 1:N rela-
tionship type is involved and the foreign key mapping is used, a single join
operation is usually needed. When the relationship relation approach is used,
such as for a binary M:N relationship type, two join operations are needed,
whereas for n-ary relationship types, n joins are needed to fully materialize the
relationship instances.

For example, to form a relation that includes the employee name, project name,
and hours that the employee works on each project, we need to connect
each EMPLOYEE tuple to the related PROJECT tuples via the WORKS_ON
relation in Figure 9.2. Hence, we must apply the EQUIJOIN operation to
the EMPLOYEE and WORKS_ON relations with the join condition
EMPLOYEE.Ssn = WORKS_ON.Essn, and then apply another EQUIJOIN opera-
tion to the resulting relation and the PROJECT relation with join condition
WORKS_ON.Pno = PROJECT.Pnumber. In general, when multiple relationships
need to be traversed, numerous join operations must be specified. The user
must always be aware of the foreign key attributes in order to use them cor-
rectly in combining related tuples from two or more relations. This is some-
times considered to be a drawback of the relational data model, because the
foreign key/primary key correspondences are not always obvious upon inspec-
tion of relational schemas. If an EQUUOIN is performed among attributes of two
relations that do not represent a foreign key/primary key relationship, the result
can often be meaningless and may lead to spurious data. For example, the
reader can try joining the PROJECT and DEPT_LOCATIONS relations on the con-
dition Dlocation = Plocation and examine the result.



298

Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

In the relational schema we create a separate relation for each multivalued attribute.
For a particular entity with a set of values for the multivalued attribute, the key
attribute value of the entity is repeated once for each value of the multivalued attri-
bute in a separate tuple because the basic relational model does not allow multiple
values (a list, or a set of values) for an attribute in a single tuple. For example,
because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS
relation in Figure 3.6; each tuple specifies one of the locations. In our example, we
apply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the Dnumber attribute to
get the values of all locations along with other DEPARTMENT attributes. In the result-
ing relation, the values of the other DEPARTMENT attributes are repeated in separate
tuples for every location that a department has.

The basic relational algebra does not have a NEST or COMPRESS operation that
would produce a set of tuples of the form {<1’, ‘Houston™, <‘4’, ‘Stafford’>, <'5’,
{Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure 3.6.
This is a serious drawback of the basic normalized or flat version of the relational
model. The object data model and object-relational systems (see Chapter 12) do
allow multivalued attributes by using the array type for the attribute.

9.2 Mapping EER Model Constructs
to Relations

In this section, we discuss the mapping of EER model constructs to relations by
extending the ER-to-relational mapping algorithm that was presented in Sec-
tion 9.1.1.

9.2.1 Mapping of Specialization or Generalization

There are several options for mapping a number of subclasses that together form a
specialization (or alternatively, that are generalized into a superclass), such as the
{SECRETARY, TECHNICIAN, ENGINEER} subclasses of EMPLOYEE in Figure 4.4. The
two main options are to map the whole specialization into a single table, or to map
it into multiple tables. Within each option are variations that depend on the con-
straints on the specialization/generalization.

We can add a further step to our ER-to-relational mapping algorithm from Sec-
tion 9.1.1, which has seven steps, to handle the mapping of specialization. Step 8,
which follows, gives the most common options; other mappings are also possible.
We discuss the conditions under which each option should be used. We use Attrs(R)
to denote the attributes of a relation R, and PK(R) to denote the primary key of R.
First we describe the mapping formally, then we illustrate it with examples.

Step 8: Options for Mapping Specialization or Generalization. Convert
each specialization with m subclasses {S, S,, ..., S,;} and (generalized) super-
class C, where the attributes of C are {k, ay, ... , a,} and k is the (primary) key, into
relation schemas using one of the following options:
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H Option 8A: Multiple relations—superclass and subclasses. Create a
relation L for C with attributes Attrs(L) = {k, ay, ... , a,} and PK(L) = k.
Create a relation L; for each subclass S;, 1 < i < m, with the attributes
Attrs(L;) = {k} U {attributes of S;} and PK(L;) = k. This option works for any
specialization (total or partial, disjoint or overlapping).

B Option 8B: Multiple relations—subclass relations only. Create a
relation L; for each subclass S;, 1 < i < m, with the attributes
Attrs(L;) = {attributes of S;} U {k, a, ..., a,} and PK(L;) = k. This option only
works for a specialization whose subclasses are total (every entity in the
superclass must belong to (at least) one of the subclasses). Additionally, it is
only recommended if the specialization has the disjointedness constraint (see
Section 4.3.1). If the specialization is overlapping, the same entity may be
duplicated in several relations.

E Option 8C: Single relation with one type attribute. Create a single relation
L with attributes Attrs(L) = {k, ay, ..., a,} U {attributes of S;} U ... U {attri-
butes of S,,} U {t} and PK(L) = k. The attribute ¢ is called a type (or
discriminating) attribute whose value indicates the subclass to which each
tuple belongs, if any. This option works only for a specialization whose sub-
classes are disjoint, and has the potential for generating many NULL values if
many specific (local) attributes exist in the subclasses.

B Option 8D: Single relation with multiple type attributes. Create a single
relation schema L with attributes Attrs(L) = {k, ay, ..., a,} U {attributes
of $;} U ... U {attributes of S,,} U {1, 2, ..., t,,,} and PK(L) = k. Each ¢,
1 < i< m, is a Boolean type attribute indicating whether or not a tuple
belongs to subclass S;. This option is used for a specialization whose sub-
classes are overlapping (but will also work for a disjoint specialization).

Options 8A and 8B are the multiple-relation options, whereas options 8C and 8D are
the single-relation options. Option 8A creates a relation L for the superclass C and its
attributes, plus a relation L; for each subclass S;; each L; includes the specific (local)
attributes of S;, plus the primary key of the superclass C, which is propagated to L; and
becomes its primary key. It also becomes a foreign key to the superclass relation. An
EQUIOIN operation on the primary key between any L; and L produces all the specific
and inherited attributes of the entities in S;. This option is illustrated in Figure 9.5(a)
for the EER schema in Figure 4.4. Option 8 A works for any constraints on the special-
ization: disjoint or overlapping, total or partial. Notice that the constraint

Tk (L) S T (L)
must hold for each L;. This specifies a foreign key from each L; to L.

In option 8B, the EQUIJOIN operation between each subclass and the superclass is
built into the schema and the superclass relation L is done away with, as illustrated
in Figure 9.5(b) for the EER specialization in Figure 4.3(b). This option works well
only when both the disjoint and total constraints hold. If the specialization is not
total, an entity that does not belong to any of the subclasses S; is lost. If the special-
ization is not disjoint, an entity belonging to more than one subclass will have its
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(a) EMPLOYEE
| Ssn | Fname | Minit| Lname | Birth_date | Address | Job_type |
1
SECRETARY LTECHNICIAN \\ENGINEER

| Ssn | Tgrade | |

| Ssn | Typing_speed | Ssn | Eng_type|

(b) CAR

| Vehicle_id | License_plate_no | Price | Max_speed | No_of_passengers|

TRUCK

| Vehicle_id | License_plate_no | Price | No_of_axles | Tonnage |

(c) EMPLOYEE
| Ssn | Fname | Minit | Lname | Birth_date | Address | Job_type | Typing_speed |Tgrade | Eng_typel

(d) PART

| Part_no | Description| Mflag | Drawing_no | Manufacture_date| Batch_no | Pflag | Supplier_name | List_price|

Figure 9.5

Options for mapping specialization or generalization. (a) Mapping the EER schema in Figure 4.4 using option 8A.
(b) Mapping the EER schema in Figure 4.3(b) using option 8B. (c) Mapping the EER schema in Figure 4.4 using
option 8C. (d) Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.

inherited attributes from the superclass C stored redundantly in more than one table L;.
With option 8B, no relation holds all the entities in the superclass C; consequently, we
must apply an OUTER UNION (or FULL OUTER JOIN) operation (see Section 6.4) to the L;
relations to retrieve all the entities in C. The result of the outer union will be similar to
the relations under options 8C and 8D except that the type fields will be missing. When-
ever we search for an arbitrary entity in C, we must search all the m relations L;.

Options 8C and 8D create a single relation to represent the superclass C and all its
subclasses. An entity that does not belong to some of the subclasses will have NULL
values for the specific (local) attributes of these subclasses. These options are not
recommended if many specific attributes are defined for the subclasses. If few local
subclass attributes exist, however, these mappings are preferable to options 8A
and 8B because they do away with the need to specify JOIN operations; therefore,
they can yield a more efficient implementation for queries.

Option 8C is used to handle disjoint subclasses by including a single type (or image
or discriminating) attribute ¢ to indicate to which of the m subclasses each tuple
belongs; hence, the domain of # could be {1, 2, ... , m}. If the specialization is partial, ¢
can have NULL values in tuples that do not belong to any subclass. If the specialization
is attribute-defined, that attribute itself serves the purpose of t and ¢ is not needed; this
option is illustrated in Figure 9.5(c) for the EER specialization in Figure 4.4.

Option 8D is designed to handle overlapping subclasses by including m Boolean
type (or flag) fields, one for each subclass. It can also be used for disjoint subclasses.
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Each type field t; can have a domain {yes, no}, where a value of yes indicates that the
tuple is a member of subclass S;. If we use this option for the EER specialization in
Figure 4.4, we would include three type attributes—Is_a_secretary, Is_a_engineer, and
Is_a_technician—instead of the Job_type attribute in Figure 9.5(c). Figure 9.5(d)
shows the mapping of the specialization from Figure 4.5 using option 8D.

For a multilevel specialization (or generalization) hierarchy or lattice, we do not have
to follow the same mapping option for all the specializations. Instead, we can use one
mapping option for part of the hierarchy or lattice and other options for other parts.
Figure 9.6 shows one possible mapping into relations for the EER lattice in Figure 4.6.
Here we used option 8A for PERSON/{EMPLOYEE, ALUMNUS, STUDENT}, and option
8C for EMPLOYEE/{STAFF, FACULTY, STUDENT_ASSISTANT} by including the
type attribute Employee_type. We then used the single-table option 8D for
STUDENT_ASSISTANT/{RESEARCH_ASSISTANT, TEACHING_ASSISTANT} by including
the type attributes Ta_flag and Ra_flag in EMPLOYEE. We also used option 8D for
STUDENT/STUDENT_ASSISTANT by including the type attributes Student_assist_flag
in STUDENT, and for STUDENT/{GRADUATE_STUDENT, UNDERGRADUATE_STUDENT}
by including the type attributes Grad_flag and Undergrad_flag in STUDENT. In Figure 9.6,
all attributes whose names end with type or flag are type fields.

9.2.2 Mapping of Shared Subclasses (Multiple Inheritance)

A shared subclass, such as ENGINEERING_MANAGER in Figure 4.6, is a subclass of
several superclasses, indicating multiple inheritance. These classes must all have the
same key attribute; otherwise, the shared subclass would be modeled as a category
(union type) as we discussed in Section 4.4. We can apply any of the options dis-
cussed in step 8 to a shared subclass, subject to the restrictions discussed in step 8 of
the mapping algorithm. In Figure 9.6, options 8C and 8D are used for the shared
subclass STUDENT_ASSISTANT. Option 8C is used in the EMPLOYEE relation
(Employee_type attribute) and option 8D is used in the STUDENT relation
(Student_assist_flag attribute).
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Mapping the EER specialization
lattice in Figure 4.8 using

J T multiple options.

| Ssn | Name | Birth_date| Sex | Address |

EMPLOYEE

| Ssn | Salary | Employee_type| Position| Rank| Percent_time| Ra_flag | Ta_flag | Project| Course |

ALUMNUS  ALUMNUS_DEGREES

{ssn | [Ssn [ Year [ Degree [ Major |
| I

STUDENT

—| Ssn | Major_dept | Grad_fla Undergrad_flag | Degree_program| Class | Student_assist_fla
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9.2.3 Mapping of Categories (Union Types)

We add another step to the mapping procedure—step 9—to handle categories. A
category (or union type) is a subclass of the union of two or more superclasses
that can have different keys because they can be of different entity types (see Sec-
tion 4.4). An example is the OWNER category shown in Figure 4.8, which is a
subset of the union of three entity types PERSON, BANK, and COMPANY. The
other category in that figure, REGISTERED_VEHICLE, has two superclasses that
have the same key attribute.

Step 9: Mapping of Union Types (Categories). For mapping a category whose
defining superclasses have different keys, it is customary to specify a new key attri-
bute, called a surrogate key, when creating a relation to correspond to the union
type. The keys of the defining classes are different, so we cannot use any one of
them exclusively to identify all entities in the relation. In our example in Figure 4.8,
we create a relation OWNER to correspond to the OWNER category, as illustrated in
Figure 9.7, and include any attributes of the category in this relation. The primary
key of the OWNER relation is the surrogate key, which we called Owner_id. We also

Figure 9.7

Mapping the EER categories
(union types) in Figure 4.8 to

relations.

PERSON

| Ssn |Driver_|icense_no| Name | Address | Owner_id

BANK

| Bname | Baddress | Owner_id|

I

COMPANY
| Cname | Caddress | Owner_id|

OWNER
B —
| Owner_id |

REGISTERED_VEHICLE

| Vehicle_id | License_plate_number|
1 T A

CAR

| Vehicle_id| Cstyle | Cmake | Cmodel | Cyear |

TRUCK |
| Vehicle_id| Tmake | Tmodel | Tonnage | Tyear |

OWNS

| Owner_id | Vehicle_id| Purchase_date| Lien_or_regular|




include the surrogate key attribute Owner_id as foreign key in each relation corre-
sponding to a superclass of the category, to specify the correspondence in values
between the surrogate key and the original key of each superclass. Notice that if a
particular PERSON (or BANK or COMPANY) entity is not a member of OWNER, it
would have a NULL value for its Owner_id attribute in its corresponding tuple in the
PERSON (or BANK or COMPANY) relation, and it would not have a tuple in the
OWNER relation. It is also recommended to add a type attribute (not shown in Fig-
ure 9.7) to the OWNER relation to indicate the particular entity type to which each
tuple belongs (PERSON or BANK or COMPANY).

For a category whose superclasses have the same key, such as VEHICLE in Figure 4.8,
there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE
category, which illustrates this case, is also shown in Figure 9.7.

9.3 Summary

In Section 9.1, we showed how a conceptual schema design in the ER model can
be mapped to a relational database schema. An algorithm for ER-to-relational
mapping was given and illustrated by examples from the COMPANY database.
Table 9.1 summarized the correspondences between the ER and relational
model constructs and constraints. Next, we added additional steps to the algo-
rithm in Section 9.2 for mapping the constructs from the EER model into the
relational model. Similar algorithms are incorporated into graphical database
design tools to create a relational schema from a conceptual schema design
automatically.

Review Questions

9.1. (a) Discuss the correspondences between the ER model constructs and the
relational model constructs. Show how each ER model construct can be
mapped to the relational model and discuss any alternative mappings.
(b) Discuss the options for mapping EER model constructs to relations, and
the conditions under which each option could be used.

Exercises

9.2. Map the UNIVERSITY database schema shown in Figure 3.20 into a rela-
tional database schema.

9.3. Try to map the relational schema in Figure 6.14 into an ER schema. This is
part of a process known as reverse engineering, where a conceptual schema
is created for an existing implemented database. State any assumptions
you make.

Exercises
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9.4. Figure 9.8 shows an ER schema for a database that can be used to keep track of
transport ships and their locations for maritime authorities. Map this schema
into a relational schema and specify all primary keys and foreign keys.

9.5. Map the BANK ER schema of Exercise 3.23 (shown in Figure 3.21) into a
relational schema. Specify all primary keys and foreign keys. Repeat for the
AIRLINE schema (Figure 3.20) of Exercise 3.19 and for the other schemas for
Exercises 3.16 through 3.24.

9.6. Map the EER diagrams in Figures 4.9 and 4.12 into relational schemas.
Justify your choice of mapping options.

9.7. Is it possible to successfully map a binary M:N relationship type without
requiring a new relation? Why or why not?
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9.8.

9.9.

Consider the EER diagram in Figure 9.9 for a car dealer.

Map the EER schemaintoasetofrelations. For the VEHICLE to CAR/TRUCK/SUV
generalization, consider the four options presented in Section 9.2.1 and show
the relational schema design under each of those options.

Using the attributes you provided for the EER diagram in Exercise 4.27, map
the complete schema into a set of relations. Choose an appropriate option
out of 8A thru 8D from Section 9.2.1 in doing the mapping of generaliza-
tions and defend your choice.

Laboratory Exercises

9.10.

9.12.

Consider the ER design for the UNIVERSITY database that was modeled using
a tool like ERwin or Rational Rose in Laboratory Exercise 3.31. Using the
SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

. Consider the ER design for the MAIL_ORDER database that was modeled

using a tool like ERwin or Rational Rose in Laboratory Exercise 3.32. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

Consider the ER design for the CONFERENCE_REVIEW database that was
modeled using a tool like ERwin or Rational Rose in Laboratory Exer-
cise 3.34. Using the SQL schema generation feature of the modeling tool,
generate the SQL schema for an Oracle database.



306 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

9.13. Consider the EER design for the GRADE_BOOK database that was modeled
using a tool like ERwin or Rational Rose in Laboratory Exercise 4.28. Using
the SQL schema generation feature of the modeling tool, generate the SQL
schema for an Oracle database.

9.14. Consider the EER design for the ONLINE_AUCTION database that was mod-
eled using a tool like ERwin or Rational Rose in Laboratory Exercise 4.29.
Using the SQL schema generation feature of the modeling tool, generate the
SQL schema for an Oracle database.

Selected Bibliography

The original ER-to-relational mapping algorithm was described in Chen’s classic
paper (Chen, 1976). Batini et al. (1992) discuss a variety of mapping algorithms
from ER and EER models to legacy models and vice versa.
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chapter i-‘ O

Introduction to SQL
Programming Techniques

n Chapters 6 and 7, we described several aspects of the

SQL language, which is the standard for relational
databases. We described the SQL statements for data definition, schema modifica-
tion, queries, views, and updates. We also described how various constraints on the
database contents, such as key and referential integrity constraints, are specified.

In this chapter and the next, we discuss some of the methods that have been devel-
oped for accessing databases from programs. Most database access in practical
applications is accomplished through software programs that implement database
applications. This software is usually developed in a general-purpose program-
ming language such as Java, C/C++/C#, COBOL (historically), or some other pro-
gramming language. In addition, many scripting languages, such as PHP, Python,
and JavaScript, are also being used for programming of database access within Web
applications. In this chapter, we focus on how databases can be accessed from the
traditional programming languages C/C++ and Java, whereas in the next chapter
we introduce how databases are accessed from scripting languages such as PHP.
Recall from Section 2.3.1 that when database statements are included in a program,
the general-purpose programming language is called the host language, whereas the
database language—SQL, in our case—is called the data sublanguage. In some
cases, special database programming languages are developed specifically for writ-
ing database applications. Although many of these were developed as research pro-
totypes, some notable database programming languages have widespread use, such
as Oracle’s PL/SQL (Programming Language/SQL).

It is important to note that database programming is a very broad topic. There are
whole textbooks devoted to each database programming technique and how that
technique is realized in a specific system. New techniques are developed all the
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time, and changes to existing techniques are incorporated into newer system ver-
sions and languages. An additional difficulty in presenting this topic is that although
there are SQL standards, these standards themselves are continually evolving, and
each DBMS vendor may have some variations from the standard. Because of this,
we have chosen to give an introduction to some of the main types of database pro-
gramming techniques and to compare these techniques, rather than study one par-
ticular method or system in detail. The examples we give serve to illustrate the main
differences that a programmer would face when using each of these database pro-
gramming techniques. We will try to use the SQL standards in our examples rather
than describe a specific system. When using a specific system, the materials in this
chapter can serve as an introduction, but should be augmented with the system
manuals or with books describing the specific system.

We start our presentation of database programming in Section 10.1 with an over-
view of the different techniques developed for accessing a database from programs.
Then, in Section 10.2, we discuss the rules for embedding SQL statements into a
general-purpose programming language, generally known as embedded SQL. This
section also briefly discusses dynamic SQL, in which queries can be dynamically
constructed at runtime, and presents the basics of the SQLJ variation of embedded
SQL that was developed specifically for the programming language Java. In Sec-
tion 10.3, we discuss the technique known as SQL/CLI (Call Level Interface), in which
alibrary of procedures and functions is provided for accessing the database. Various
sets of library functions have been proposed. The SQL/CLI set of functions is the
one given in the SQL standard. Another widely used library of functions is ODBC
(Open Data Base Connectivity), which has many similarities to SQL/CLI; in fact,
SQL/CLI can be thought of as the standardized version of ODBC. A third library of
classes—which we do describe—is JDBC; this was developed specifically for access-
ing databases from the Java object-oriented programming language (OOPL). In
OOPL, a library of classes is used instead of a library of functions and procedures,
and each class has its own operations and functions. In Section 10.4 we discuss
SQL/PSM (Persistent Stored Modules), which is a part of the SQL standard that
allows program modules—procedures and functions—to be stored by the DBMS
and accessed through SQL; this also specifies a procedural database programming
language for writing the persistent stored modules. We briefly compare the three
approaches to database programming in Section 10.5, and provide a chapter sum-
mary in Section 10.6.

10.1 Overview of Database Programming
Techniques and Issues

We now turn our attention to the techniques that have been developed for access-
ing databases from programs and, in particular, to the issue of how to access SQL
databases from application programs. Our presentation of SQL in Chapters 6 and 7
focused on the language constructs for various database operations—from schema
definition and constraint specification to querying, updating, and specifying views.
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Most database systems have an interactive interface where these SQL commands
can be typed directly into a monitor for execution by the database system.
For example, in a computer system where the Oracle RDBMS is installed, the com-
mand SQLPLUS starts the interactive interface. The user can type SQL commands
or queries directly over several lines, ended by a semicolon and the Enter key (that
is, ";<cr>"). Alternatively, a file of commands can be created and executed
through the interactive interface by typing e<filename>. The system will execute
the commands written in the file and display the results, if any.

The interactive interface is quite convenient for schema and constraint creation or
for occasional ad hoc queries. However, in practice, the majority of database inter-
actions are executed through programs that have been carefully designed and
tested. These programs are generally known as application programs or database
applications, and are used as canned transactions by the end users, as discussed in
Section 1.4.3. Another common use of database programming is to access a data-
base through an application program that implements a Web interface, for exam-
ple, when making airline reservations or online purchases. In fact, the vast majority
of Web electronic commerce applications include some database access commands.
Chapter 11 gives an overview of Web database programming using PHP, a script-
ing language that has recently become widely used.

In this section, first we give an overview of the main approaches to database pro-
gramming. Then we discuss some of the problems that occur when trying to access
a database from a general-purpose programming language, and the typical sequence
of commands for interacting with a database from a software program.

10.1.1 Approaches to Database Programming

Several techniques exist for including database interactions in application pro-
grams. The main approaches for database programming are the following:

1. Embedding database commands in a general-purpose programming
language. In this approach, database statements are embedded into the host
programming language, but they are identified by a special prefix. For
example, the prefix for embedded SQL is the string EXEC SQL, which pre-
cedes all SQL commands in a host language program.' A precompiler or
preproccessor scans the source program code to identify database state-
ments and extract them for processing by the DBMS. They are replaced in
the program by function calls to the DBMS-generated code. This technique
is generally referred to as embedded SQL.

2. Using a library of database functions or classes. A library of functions is
made available to the host programming language for database calls. For
example, there could be functions to connect to a database, prepare a query,
execute a query, execute an update, loop over the query result on record at a
time, and so on. The actual database query and update commands and any

10ther prefixes are sometimes used, but this is the most common.
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other necessary information are included as parameters in the function calls.
This approach provides what is known as an application programming
interface (API) for accessing a database from application programs. For
object-oriented programming languages (OOPLs), a class library is used.
For example, Java has the JDBC class library, which can generate various
types of objects such as: connection objects to a particular database, query
objects, and query result objects. Each type of object has a set of operations
associated with the class corresponding to the object.

3. Designing a brand-new language. A database programming language is
designed from scratch to be compatible with the database model and query
language. Additional programming structures such as loops and conditional
statements are added to the database language to convert it into a full-fledged
programming language. An example of this approach is Oracle’s PL/SQL. The
SQL standard has the SQL/PSM language for specifying stored procedures.

In practice, the first two approaches are more common, since many applications
are already written in general-purpose programming languages but require some
database access. The third approach is more appropriate for applications that have
intensive database interaction. One of the main problems with the first two
approaches is impedance mismatch, which does not occur in the third approach.

10.1.2 Impedance Mismatch

Impedance mismatch is the term used to refer to the problems that occur because
of differences between the database model and the programming language model.
For example, the practical relational model has three main constructs: columns
(attributes) and their data types, rows (also referred to as tuples or records), and
tables (sets or multisets of records). The first problem that may occur is that the
data types of the programming language differ from the attribute data types that are
available in the data model. Hence, it is necessary to have a binding for each host
programming language that specifies for each attribute type the compatible pro-
gramming language types. A different binding is needed for each programming lan-
guage because different languages have different data types. For example, the data
types available in C/C++ and Java are different, and both differ from the SQL data
types, which are the standard data types for relational databases.

Another problem occurs because the results of most queries are sets or multisets of
tuples (rows), and each tuple is formed of a sequence of attribute values. In the pro-
gram, it is often necessary to access the individual data values within individual
tuples for printing or processing. Hence, a binding is needed to map the query result
data structure, which is a table, to an appropriate data structure in the program-
ming language. A mechanism is needed to loop over the tuples in a query result in
order to access a single tuple at a time and to extract individual values from the
tuple. The extracted attribute values are typically copied to appropriate program
variables for further processing by the program. A cursor or iterator variable is
typically used to loop over the tuples in a query result. Individual values within each
tuple are then extracted into distinct program variables of the appropriate type.
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Impedance mismatch is less of a problem when a special database programming
language is designed that uses the same data model and data types as the database
model. One example of such a language is Oracle’s PL/SQL. The SQL standard also
has a proposal for such a database programming language, known as SQL/PSM. For
object databases, the object data model (see Chapter 12) is quite similar to the data
model of the Java programming language, so the impedance mismatch is greatly
reduced when Java is used as the host language for accessing a Java-compatible
object database. Several database programming languages have been implemented
as research prototypes (see the Selected Bibliography).

10.1.3 Typical Sequence of Interaction
in Database Programming

When a programmer or software engineer writes a program that requires access to
a database, it is quite common for the program to be running on one computer
system while the database is installed on another. Recall from Section 2.5 that a
common architecture for database access is the three-tier client/server model,
where a top-tier client program handles display of information on a laptop or
mobile device usually as a Web client or mobile app, a middle-tier application
program implements the logic of a business software application but includes some
calls to one or more database servers at the bottom tier to access or update the
data.? When writing such an application program, a common sequence of interac-
tion is the following:

1. When the application program requires access to a particular database, the
program must first establish or open a connection to the database server.
Typically, this involves specifying the Internet address (URL) of the machine
where the database server is located, plus providing a login account name
and password for database access.

2. Once the connection is established, the program can interact with the database
by submitting queries, updates, and other database commands. In general,
most types of SQL statements can be included in an application program.

3. When the program no longer needs access to a particular database, it should
terminate or close the connection to the database.

A program can access multiple databases if needed. In some database programming
approaches, only one connection can be active at a time, whereas in other
approaches multiple connections can be established simultaneously.

In the next three sections, we discuss examples of each of the three main approaches
to database programming. Section 10.2 describes how SQL is embedded into a pro-
gramming language. Section 10.3 discusses how function calls and class libraries are
used to access the database using SQL/CLI (similar to ODBC) and JDBC, and Sec-
tion 10.4 discusses an extension to SQL called SQL/PSM that allows general-purpose

2As we discussed in Section 2.5, there are two-tier and three-tier architectures; to keep our discussion
simple, we will assume a two-tier client/server architecture here.
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programming constructs for defining modules (procedures and functions) that are
stored within the database system.” Section 10.5 compares these approaches.

10.2 Embedded SQL, Dynamic SQL, and SQLJ

In this section, we give an overview of the techniques for embedding SQL state-
ments in a general-purpose programming language. We focus on two languages: C
and Java. The examples used with the C language, known as embedded SQL, are
presented in Sections 10.2.1 through 10.2.3, and can be adapted to other similar
programming languages. The examples using Java, known as SQLJ, are presented
in Sections 10.2.4 and 10.2.5. In this embedded approach, the programming lan-
guage is called the host language. Most SQL statements—including data or con-
straint definitions, queries, updates, or view definitions—can be embedded in a
host language program.

10.2.1 Retrieving Single Tuples with Embedded SQL

To illustrate the concepts of embedded SQL, we will use C as the host programming
language.? In a C program, an embedded SQL statement is distinguished from pro-
gramming language statements by prefixing it with the keywords EXEC SQL so that
a preprocessor (or precompiler) can separate embedded SQL statements from the
host language source code. The SQL statements within a program are terminated
by a matching END-EXEC or by a semicolon (;). Similar rules apply to embedding
SQL in other programming languages.

Within an embedded SQL command, the programmer can refer to specially
declared C program variables; these are called shared variables because they are
used in both the C program and the embedded SQL statements. Shared variables
are prefixed by a colon (:) when they appear in an SQL statement. This distin-
guishes program variable names from the names of database schema constructs
such as attributes (column names) and relations (table names). It also allows pro-
gram variables to have the same names as attribute names, since they are distin-
guishable by the colon (:) prefix in the SQL statement. Names of database schema
constructs—such as attributes and relations—can only be used within the SQL
commands, but shared program variables can be used elsewhere in the C program
without the colon (:) prefix.

Suppose that we want to write C programs to process the COMPANY database in
Figure 5.5. We need to declare program variables to match the types of the database
attributes that the program will process. The programmer can choose the names of
the program variables; they may or may not have names that are identical to their

8SQL/PSM illustrates how typical general-purpose programming language constructs—such as loops
and conditional structures—can be incorporated into SQL.

40ur discussion here also applies to the C++ or C# programming languages, since we do not use any
of the object-oriented features, but focus on the database programming mechanism.
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0) int loop ;
1) EXEC SQL BEGIN DECLARE SECTION ;
2) varchar dname [16], fname [16], lname [16], address [31] ;
3) char ssn [10], bdate [11], sex [2], minit [2] ;
4) float salary, raise ;
5) int dno, dnumber ; Figure 10.1
6) int SQLCODE ; char SQLSTATE [6] ; C program variables used in the
7) EXEC SQL END DECLARE SECTION ; embedded SQL examples E1 and E2.

corresponding database attributes. We will use the C program variables declared
in Figure 10.1 for all our examples and show C program segments without vari-
able declarations. Shared variables are declared within a declare section in the
program, as shown in Figure 10.1 (lines 1 through 7).> A few of the common
bindings of C types to SQL types are as follows. The SQL types INTEGER, SMALLINT,
REAL, and DOUBLE are mapped to the C data types long, short, float, and
double, respectively. Fixed-length and varying-length strings (CHAR [il,
VARCHAR [i]) in SQL can be mapped to arrays of characters (char [i+1],
varchar [i+1]) in C that are one character longer than the SQL type because
strings in C are terminated by a NULL character (\0), which is not part of the
character string itself.° Although varchar is not a standard C data type, it is per-
mitted when C is used for SQL database programming.

Notice that the only embedded SQL commands in Figure 10.1 are lines 1 and 7,
which tell the precompiler to take note of the C variable names between BEGIN
DECLARE and END DECLARE because they can be included in embedded SQL state-
ments—as long as they are preceded by a colon (:). Lines 2 through 5 are regular C
program declarations. The C program variables declared in lines 2 through 5 cor-
respond to the attributes of the EMPLOYEE and DEPARTMENT tables from the
COMPANY database in Figure 5.5 that was declared by the SQL DDL in Figure 6.1.
The variables declared in line 6—SQLCODE and SQLSTATE—are called SQL
communication variables; they are used to communicate errors and exception
conditions between the database system and the executing program. Line 0 shows a
program variable loop that will not be used in any embedded SQL statement, so it is
declared outside the SQL declare section.

Connecting to the Database. The SQL command for establishing a connection
to a database has the following form:

CONNECT TO <server name>AS <connection name>
AUTHORIZATION <user account name and password> ;

In general, since a user or program can access several database servers, several con-
nections can be established, but only one connection can be active at any point in

SWe use line numbers in our code segments for easy reference; these numbers are not part of the
actual code.

63QL strings can also be mapped to char* types in C.
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time. The programmer or user can use the <connection name> to change from the
currently active connection to a different one by using the following command:

SET CONNECTION <connection name> ;

Once a connection is no longer needed, it can be terminated by the following
command:

DISCONNECT <connection name> ;

In the examples in this chapter, we assume that the appropriate connection has
already been established to the COMPANY database, and that it is the currently
active connection.

Communication variables SOLCODE and SQOLSTATE. The two special
communication variables that are used by the DBMS to communicate exception
or error conditions to the program are SQLCODE and SQLSTATE. The SOLCODE
variable shown in Figure 10.1 is an integer variable. After each database command
is executed, the DBMS returns a value in SOLCODE. A value of 0 indicates that the
statement was executed successfully by the DBMS. If SOLCODE > 0 (or, more spe-
cifically, if SQLCODE = 100), this indicates that no more data (records) are available
in a query result. If SQLCODE < 0, this indicates some error has occurred. In some
systems—for example, in the Oracle RDBMS—SQLCODE is a field in a record
structure called SQLCA (SQL communication area), so it is referenced as
SQLCA.SQLCODE. In this case, the definition of SOLCA must be included in the C
program by including the following line:

EXEC SQL include SQLCA ;

In later versions of the SQL standard, a communication variable called SOLSTATE
was added, which is a string of five characters. A value of ‘00000’ in SQLSTATE indi-
cates no error or exception; other values indicate various errors or exceptions. For
example, ‘02000” indicates ‘no more data’ when using SQLSTATE. Currently, both
SQLSTATE and SOLCODE are available in the SQL standard. Many of the error and
exception codes returned in SOLSTATE are supposed to be standardized for all SQL
vendors and platforms,” whereas the codes returned in SQLCODE are not stan-
dardized but are defined by the DBMS vendor. Hence, it is generally better to use
SQLSTATE because this makes error handling in the application programs indepen-
dent of a particular DBMS. As an exercise, the reader should rewrite the examples
given later in this chapter using SQLSTATE instead of SQLCODE.

Example of Embedded SQL Programming. Our first example to illustrate
embedded SQL programming is a repeating program segment (loop) that takes as
input a Social Security number of an employee and prints some information from
the corresponding EMPLOYEE record in the database. The C program code is shown
as program segment E1 in Figure 10.2. The program reads (inputs) an Ssn value

"In particular, SOLSTATE codes starting with the characters O through 4 or A through H are supposed to
be standardized, whereas other values can be implementation-defined.
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//Program Segment El: Figure 10.2
0) loop =1 ; Program segment E1,
1) while (loop) { a C program segment
2) prompt ("Enter a Social Security Number: ", ssn) ; with embedded SQL.
3) EXEC SQL
4) SELECT Fname, Minit, Lname, Address, Salary
5) INTO :fname, :minit, :lname, :address, :salary
6) FROM EMPLOYEE WHERE Ssn = :ssn ;
7) if (SQLCODE = = 0) printf(fname, minit, lname, address, salary)
8) else printf("Social Security Number does not exist: ", ssn) ;
9) prompt ("More Social Security Numbers (enter 1 for Yes, 0 for No): ", loop) ;
10) 1}

and then retrieves the EMPLOYEE tuple with that Ssn from the database via the
embedded SQL command. The INTO clause (line 5) specifies the program vari-
ables into which attribute values from the database record are retrieved. C program
variables in the INTO clause are prefixed with a colon (:), as we discussed earlier.
The INTO clause can be used in this manner only when the query result is a single
record; if multiple records are retrieved, an error will be generated. We will see how
multiple records are handled in Section 10.2.2.

Line 7 in E1 illustrates the communication between the database and the program
through the special variable SQLCODE. If the value returned by the DBMS in
SQLCODE is 0, the previous statement was executed without errors or exception
conditions. Line 7 checks this and assumes that if an error occurred, it was because
no EMPLOYEE tuple existed with the given Ssn; therefore it outputs a message to
that effect (line 8).

When a single record is retrieved as in example E1, the programmer can assign its
attribute values directly to C program variables in the INTO clause, as in line 5. In
general, an SQL query can retrieve many tuples. In that case, the C program will
typically loop through the retrieved tuples and process them one at a time. The con-
cept of a cursor is used to allow tuple-at-a-time processing of a query result by the
host language program. We describe cursors next.

10.2.2 Processing Query Results Using Cursors

A cursor is a variable that refers to a single tuple (row) from a query result that
retrieves a collection of tuples. It is used to loop over the query result, one record at
a time. The cursor is declared when the SQL query is declared. Later in the pro-
gram, an OPEN CURSOR command fetches the query result from the database and
sets the cursor to a position before the first row in the result of the query. This
becomes the current row for the cursor. Subsequently, FETCH commands are
issued in the program; each FETCH moves the cursor to the next row in the result of
the query, making it the current row and copying its attribute values into the C
(host language) program variables specified in the FETCH command by an INTO
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clause. The cursor variable is basically an iterator that iterates (loops) over the
tuples in the query result—one tuple at a time.

To determine when all the tuples in the result of the query have been processed, the
communication variable SOLCODE (or, alternatively, SQLSTATE) is checked. If a
FETCH command is issued that results in moving the cursor past the last tuple in the
result of the query, a positive value (SQLCODE > 0) is returned in SQLCODE,
indicating that no data (tuple) was found (or the string ‘02000’ is returned in
SQLSTATE). The programmer uses this to terminate the loop over the tuples in the
query result. In general, numerous cursors can be opened at the same time. A
CLOSE CURSOR command is issued to indicate that we are done with processing
the result of the query associated with that cursor.

An example of using cursors to process a query result with multiple records is shown
in Figure 10.3, where a cursor called EMP is declared in line 4. The EMP cursor
is associated with the SQL query declared in lines 5 through 6, but the query
is not executed until the OPEN EMP command (line 8) is processed. The
OPEN <cursor name> command executes the query and fetches its result as a table
into the program workspace, where the program can loop through the individual
rows (tuples) by subsequent FETCH <cursor name> commands (line 9). We assume

Figure 10.3

Program segment E2, a C program segment that uses
cursors with embedded SQL for update purposes.

//Program Segment E2:

0) prompt("Enter the Department Name: ", dname) ;

1) EXEC SQL

2) SELECT Dnumber INTO :dnumber

3) FROM DEPARTMENT WHERE Dname = :dname ;

4) EXEC SQL DECLARE EMP CURSOR FOR

5) SELECT Ssn, Fname, Minit, Lname, Salary

6) FROM EMPLOYEE WHERE Dno = :dnumber

7) FOR UPDATE OF Salary ;

8) EXEC SQL OPEN EMP ;

9) EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;
10) while (SQLCODE = = 0) {

11) printf("Employee name is:", Fname, Minit, Lname) ;

12) prompt ("Enter the raise amount: ", raise) ;

13) EXEC SQL

14) UPDATE EMPLOYEE

15) SET Salary = Salary + :raise

16) WHERE CURRENT OF EMP ;

17) EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;
18) }

19) EXEC SQL CLOSE EMP ;



10.2 Embedded SQL, Dynamic SQL, and SQLJ

that appropriate C program variables have been declared as in Figure 10.1. The pro-
gram segment in E2 reads (inputs) a department name (line 0), retrieves the
matching department number from the database (lines 1 to 3), and then retrieves
the employees who work in that department via the declared EMP cursor. A loop
(lines 10 to 18) iterates over each record in the query result, one at a time, and
prints the employee name, then reads (inputs) a raise amount for that employee
(line 12) and updates the employee’s salary in the database by the raise amount
(lines 14 to 16).

This example also illustrates how the programmer can update database records.
When a cursor is defined for rows that are to be modified (updated), we must add
the clause FOR UPDATE OF in the cursor declaration and list the names of any attri-
butes that will be updated by the program. This is illustrated in line 7 of code seg-
ment E2. If rows are to be deleted, the keywords FOR UPDATE must be added
without specifying any attributes. In the embedded UPDATE (or DELETE) command,
the condition WHERE CURRENT OF <cursor name> specifies that the current tuple
referenced by the cursor is the one to be updated (or deleted), as in line 16 of E2.

There is no need to include the FOR UPDATE OF clause in line 7 of E2 if the results
of the query are to be used for retrieval purposes only (no update or delete).

General Options for a Cursor Declaration. Several options can be specified
when declaring a cursor. The general form of a cursor declaration is as follows:

DECLARE <cursor name> [ INSENSITIVE | [ SCROLL | CURSOR
[ WITH HOLD ] FOR <query specification>

[ ORDER BY <ordering specification> |

[ FOR READ ONLY | FOR UPDATE [ OF <attribute list> ] ] ;

We already briefly discussed the options listed in the last line. The default is that the
query is for retrieval purposes (FOR READ ONLY). If some of the tuples in the query
result are to be updated, we need to specify FOR UPDATE OF <attribute list> and list
the attributes that may be updated. If some tuples are to be deleted, we need to
specify FOR UPDATE without any attributes listed.

When the optional keyword SCROLL is specified in a cursor declaration, it is pos-
sible to position the cursor in other ways than for purely sequential access. A fetch
orientation can be added to the FETCH command, whose value can be one of NEXT,
PRIOR, FIRST, LAST, ABSOLUTE i, and RELATIVE i. In the latter two commands, i
must evaluate to an integer value that specifies an absolute tuple position within the
query result (for ABSOLUTE i), or a tuple position relative to the current cursor
position (for RELATIVE i). The default fetch orientation, which we used in our
examples, is NEXT. The fetch orientation allows the programmer to move the cursor
around the tuples in the query result with greater flexibility, providing random
access by position or access in reverse order. When SCROLL is specified on the cur-
sor, the general form of a FETCH command is as follows, with the parts in square
brackets being optional:

FETCH [ [ <fetch orientation> | FROM ] <cursor name> INTO <fetch target list>;
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The ORDER BY clause orders the tuples so that the FETCH command will fetch them
in the specified order. It is specified in a similar manner to the corresponding clause
for SQL queries (see Section 6.3.6). The last two options when declaring a cursor
(INSENSITIVE and WITH HOLD) refer to transaction characteristics of database pro-
grams, which we will discuss in Chapter 20.

10.2.3 Specifying Queries at Runtime Using Dynamic SQL

In the previous examples, the embedded SQL queries were written as part of the
host program source code. Hence, anytime we want to write a different query, we
must modify the program code and go through all the steps involved (compiling,
debugging, testing, and so on). In some cases, it is convenient to write a program
that can execute different SQL queries or updates (or other operations) dynamically
at runtime. For example, we may want to write a program that accepts an SQL
query typed from the monitor, executes it, and displays its result, such as the inter-
active interfaces available for most relational DBMSs. Another example is when a
user-friendly interface generates SQL queries dynamically for the user based on
user input through a Web interface or mobile App. In this section, we give a brief
overview of dynamic SQL, which is one technique for writing this type of database
program, by giving a simple example to illustrate how dynamic SQL can work. In
Section 10.3, we will describe another approach for dealing with dynamic queries
using function libraries or class libraries.

Program segment E3 in Figure 10.4 reads a string that is input by the user (that
string should be an SQL update command in this example) into the string program
variable sqlupdatestring in line 3. It then prepares this as an SQL command in
line 4 by associating it with the SQL variable sq/command. Line 5 then executes
the command. Notice that in this case no syntax check or other types of checks
on the command are possible at compile time, since the SQL command is not
available until runtime. This contrasts with our previous examples of embedded
SQL, where the query could be checked at compile time because its text was in
the program source code.

In E3, the reason for separating PREPARE and EXECUTE is that if the command is to
be executed multiple times in a program, it can be prepared only once. Preparing
the command generally involves syntax and other types of checks by the system, as

0)
1)
2)

3)
4)
3)

//Program Segment E3: Figure 10.4
EXEC SQL BEGIN DECLARE SECTION ; Program segmerjt E3,aC program segment
varchar sqlupdatestring [256] ; that uses dynamic SQL for updating a table.

EXEC SQL END DECLARE SECTION ;

prompt ("Enter the Update Command: ", sqglupdatestring) ;
EXEC SQL PREPARE sglcommand FROM :sqlupdatestring ;
EXEC SQL EXECUTE sglcommand ;
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well as generating the code for executing it. It is possible to combine the PREPARE
and EXECUTE commands (lines 4 and 5 in E3) into a single statement by writing

EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

This is useful if the command is to be executed only once. Alternatively, the pro-
grammer can separate the two statements to catch any errors after the PREPARE
statement as in E3.

Although including a dynamic update command is relatively straightforward in
dynamic SQL, a dynamic retrieval query is much more complicated. This is because
the programmer does not know the types or the number of attributes to be retrieved
by the SQL query when writing the program. A complex data structure is needed to
allow for different numbers and types of attributes in the query result if no prior
information is known about the dynamic query. Techniques similar to those that
we shall discuss in Section 10.3 can be used to assign retrieval query results (and
query parameters) to host program variables.

10.2.4 SQLJ: Embedding SOL Commands in Java

In the previous subsections, we gave an overview of how SQL commands can be
embedded in a traditional programming language, using the C language in our
examples. We now turn our attention to how SQL can be embedded in an object-
oriented programming language,® in particular, the Java language. SQLJ is a stan-
dard that has been adopted by several vendors for embedding SQL in Java.
Historically, SQL] was developed after JDBC, which is used for accessing SQL data-
bases from Java using class libraries and function calls. We discuss JDBC in Sec-
tion 10.3.2. In this section, we focus on SQLJ as it is used in the Oracle RDBMS. An
SQLJ translator will generally convert SQL statements into Java, which can then be
executed through the JDBC interface. Hence, it is necessary to install a JDBC driver
when using SQLJ.? In this section, we focus on how to use SQLJ concepts to write
embedded SQL in a Java program.

Before being able to process SQL]J with Java in Oracle, it is necessary to import several
class libraries, shown in Figure 10.5. These include the JDBC and IO classes (lines 1
and 2), plus the additional classes listed in lines 3, 4, and 5. In addition, the program
must first connect to the desired database using the function call getConnection,
which is one of the methods of the oracle class in line 5 of Figure 10.5. The format of
this function call, which returns an object of type default context,'is as follows:

public static DefaultContext

getConnection(String url, String user, String password,
Boolean autoCommit)

throws SQLException ;

8This section assumes familiarity with object-oriented concepts (see Chapter 12) and basic Java concepts.
SWe discuss JDBC drivers in Section 10.3.2.

10A default context, when set, applies to subsequent commands in the program until it is changed.
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1) import java.sqgl.* ; Figure 10.5

2) import java.io.* ; Importing classes needed for including
SQLJ in Java programs in Oracle, and
establishing a connection

and default context.

3) import sglj.runtime.* ;
4) import sqglj.runtime.ref.* ;
5) import oracle.sglj.runtime.* ;

6) DefaultContext cntxt =
7) oracle.getConnection("<url name>", "<user name>", "<password>", true) ;
8) DefaultContext.setDefaultContext(cntxt) ;

For example, we can write the statements in lines 6 through 8 in Figure 10.5 to
connect to an Oracle database located at the url <url name> using the login of
<user name> and <password> with automatic commitment of each command,'!
and then set this connection as the default context for subsequent commands.

In the following examples, we will not show complete Java classes or programs
since it is not our intention to teach Java. Rather, we will show program segments
that illustrate the use of SQL]J. Figure 10.6 shows the Java program variables used in
our examples. Program segment J1 in Figure 10.7 reads an employee’s Ssn and
prints some of the employee’s information from the database.

Notice that because Java already uses the concept of exceptions for error han-
dling, a special exception called sQLException is used to return errors or
exception conditions after executing an SQL database command. This plays a
similar role to SOLCODE and SQLSTATE in embedded SQL. Java has many types
of predefined exceptions. Each Java operation (function) must specify the
exceptions that can be thrown—that is, the exception conditions that may
occur while executing the Java code of that operation. If a defined exception
occurs, the system transfers control to the Java code specified for exception
handling. In J1, exception handling for an SQLException is specified in lines 7
and 8. In Java, the following structure

try {<operation>} catch (<exception>) {<exception handling
code>} <continuation code>

Figure 10.6 1) string dname, ssn , fname, fn, lname, ln,
Java program variables bdate, address ;

used in SOLJ examples 2) char sex, minit, mi ;

J1and J2. 3) double salary, sal ;

4) integer dno, dnumber ;

" Automatic commitment roughly means that each command is applied to the database after it is
executed. The alternative is that the programmer wants to execute several related database commands
and then commit them together. We discuss commit concepts in Chapter 20 when we describe database
transactions.
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//Program Segment Jl:
1) ssn = readEntry("Enter a Social Security Number: ") ;

Figure 10.7
Program segment J1,

2) try { a Java program
3) #sgl { SELECT Fname, Minit, Lname, Address, Salary segment with SQLJ.
4) INTO :fname, :minit, :lname, :address, :salary
5) FROM EMPLOYEE WHERE Ssn = :ssn} ;
6) } catch (SQLException se) {
7) System.out.println("Social Security Number does not exist: " + ssn) ;
8) Return ;
9) }
10) System.out.println(fname + " " + minit + " " + lname + " " + address
+ " " + salary)

is used to deal with exceptions that occur during the execution of <operation>. If
no exception occurs, the <continuation code> is processed directly. Exceptions
that can be thrown by the code in a particular operation should be specified as part
of the operation declaration or interface—for example, in the following format:

<operation return type> <operation name> (<parameters>)
throws SQLException, IOException ;

In SQLJ, the embedded SQL commands within a Java program are preceded by
#sql, as illustrated in J1 line 3, so that they can be identified by the preprocessor.
The #sql is used instead of the keywords EXEC SQL that are used in embedded SQL
with the C programming language (see Section 10.2.1). SQLJ uses an INTO clause—
similar to that used in embedded SQL—to return the attribute values retrieved from
the database by an SQL query into Java program variables. The program variables
are preceded by colons (:) in the SQL statement, as in embedded SQL.

InJ1 a single tuple is retrieved by the embedded SQLJ query; that is why we are able
to assign its attribute values directly to Java program variables in the INTO clause in
line 4 in Figure 10.7. For queries that retrieve many tuples, SQL]J uses the concept of
an iterator, which is similar to a cursor in embedded SQL.

10.2.5 Processing Query Results in SQLJ Using lterators

In SQLJ, an iterator is a type of object associated with a collection (set or multiset)
of records in a query result.'? The iterator is associated with the tuples and attri-
butes that appear in a query result. There are two types of iterators:

1. A named iterator is associated with a query result by listing the attribute names
and types that appear in the query result. The attribute names must correspond
to appropriately declared Java program variables, as shown in Figure 10.6.

2. A positional iterator lists only the attribute types that appear in the query
result.

12We shall discuss iterators in more detail in Chapter 12 when we present object database concepts.
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In both cases, the list should be in the same order as the attributes that are listed in
the SELECT clause of the query. However, looping over a query result is different for
the two types of iterators. First, we show an example of using a named iterator in
Figure 10.8, program segment J2A. Line 9 in Figure 10.8 shows how a named itera-
tor type Emp is declared. Notice that the names of the attributes in a named iterator
type must match the names of the attributes in the SQL query result. Line 10 shows
how an iterator object e of type Emp is created in the program and then associated
with a query (lines 11 and 12).

When the iterator object is associated with a query (lines 11 and 12 in Figure 10.8),
the program fetches the query result from the database and sets the iterator to a
position before the first row in the result of the query. This becomes the current row
for the iterator. Subsequently, next operations are issued on the iterator object;
each next moves the iterator to the next row in the result of the query, making it the
current row. If the row exists, the operation retrieves the attribute values for that
row into the corresponding program variables. If no more rows exist, the next
operation returns NULL, and can thus be used to control the looping. Notice that the
named iterator does not need an INTO clause, because the program variables corre-
sponding to the retrieved attributes are already specified when the iterator type is
declared (line 9 in Figure 10.8).

In Figure 10.8, the command (e.next()) in line 13 performs two functions: It
gets the next tuple in the query result and controls the WwHILE loop. Once the

Figure 10.8

Program segment J2A, a Java program segment that uses a named iterator to print employee information in a
particular department.

//Program Segment J2A:

0) dname = readEntry("Enter the Department Name: ")

1) try {

2) #sgl { SELECT Dnumber INTO :dnumber

3) FROM DEPARTMENT WHERE Dname = :dname} ;

4) } catch (SQLException se) {

5) System.out.println("Department does not exist: " + dname) ;

6) Return ;

7) }

8) System.out.printline("Employee information for Department: " + dname) ;

9) #sqgl iterator Emp(String ssn, String fname, String minit, String lname,

double salary) ;

10) Emp e = null ;

11) #sql e = { SELECT ssn, fname, minit, lname, salary

12) FROM EMPLOYEE WHERE Dno = :dnumber} ;

13) while (e.next()) {

14) System.out.printline(e.ssn + " " + e.fname + " " + e.minit + " " +
e.lname + " " + e.salary) ;

15) } ;

16) e.close() ;
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program is done with processing the query result, the command e.close()
(line 16) closes the iterator.

Next, consider the same example using positional iterators as shown in Figure 10.9
(program segment J2B). Line 9 in Figure 10.9 shows how a positional iterator type
Emppos is declared. The main difference between this and the named iterator is that
there are no attribute names (corresponding to program variable names) in the
positional iterator—only attribute types. This can provide more flexibility, but it
makes the processing of the query result slightly more complex. The attribute types
must still be compatible with the attribute types in the SQL query result and in the
same order. Line 10 shows how a positional iterator object e of type Emppos is cre-
ated in the program and then associated with a query (lines 11 and 12).

The positional iterator behaves in a manner that is more similar to embedded SQL
(see Section 10.2.2). A FETCH <iterator variable> INTO <program variables> com-
mand is needed to get the next tuple in a query result. The first time fetch is exe-
cuted, it gets the first tuple (line 13 in Figure 10.9). Line 16 gets the next tuple until
no more tuples exist in the query result. To control the loop, a positional iterator
function e.endFetch() is used. This function is automatically set to a value of
TRUE when the iterator is initially associated with an SQL query (line 11), and is set
to FALSE each time a fetch command returns a valid tuple from the query result. It
is set to TRUE again when a fetch command does not find any more tuples. Line 14
shows how the looping is controlled by negation.
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Figure 10.9

Program segment J2B, a Java program segment that uses a positional iterator to print employee information in a

particular department.

//Program Segment J2B:

0) dname = readEntry("Enter the Department Name: ")

1) try {

2) #sgl { SELECT Dnumber INTO :dnumber

3) FROM DEPARTMENT WHERE Dname = :dname} ;

4) } catch (SQLException se) {

5) System.out.println("Department does not exist: " + dname) ;

6) Return ;

7) }

8) System.out.printline("Employee information for Department: " + dname) ;

9) #sqgl iterator Emppos(String, String, String, String, double)
10) Emppos e = null ;

11) #sql e = { SELECT ssn, fname, minit, lname, salary

12) FROM EMPLOYEE WHERE Dno = :dnumber} ;

13) #sql { FETCH :e INTO :ssn, :fn, :mi, :1n, :sal} ;

14) while (!e.endFetch()) {

15) System.out.printline(ssn + " " 4+ fn + " " + mi + " " + 1ln + "

16) #sql { FETCH :e INTO :ssn, :fn, :mi, :1n, :sal} ;
17) }
18) e.close() ;

r

" + sal)

’
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10.3 Database Programming with Function
Calls and Class Libraries: SQL/CLI
and JDBC

Embedded SQL (see Section 10.2) is sometimes referred to as a static database pro-
gramming approach because the query text is written within the program source
code and cannot be changed without recompiling or reprocessing the source code.
The use of function calls is a more dynamic approach for database programming
than embedded SQL. We already saw one dynamic database programming technique—
dynamic SQL—in Section 10.2.3. The techniques discussed here provide another
approach to dynamic database programming. A library of functions, also known
as an application programming interface (API), is used to access the database.
Although this provides more flexibility because no preprocessor is needed, one
drawback is that syntax and other checks on SQL commands have to be done at
runtime. Another drawback is that it sometimes requires more complex program-
ming to access query results because the types and numbers of attributes in a query
result may not be known in advance.

In this section, we give an overview of two function call interfaces. We first discuss
the SQL Call Level Interface (SQL/CLI), which is part of the SQL standard. This
was developed as a standardization of the popular library of functions known as
ODBC (Open Database Connectivity). We use C as the host language in our
SQL/CLI examples. Then we give an overview of JDBC, which is the call function
interface for accessing databases from Java. Although it is commonly assumed that
JDBC stands for Java Database Connectivity, JDBC is just a registered trademark of
Sun Microsystems (now Oracle), not an acronym.

The main advantage of using a function call interface is that it makes it easier
to access multiple databases within the same application program, even if they
are stored under different DBMS packages. We discuss this further in Sec-
tion 10.3.2 when we discuss Java database programming with JDBC, although
this advantage also applies to database programming with SQL/CLI and ODBC
(see Section 10.3.1).

10.3.1 Database Programming with SOL/CLI Using C
as the Host Language

Before using the function calls in SQL/CLI, it is necessary to install the appropriate
library packages on the database server. These packages are obtained from the ven-
dor of the DBMS being used. We now give an overview of how SQL/CLI can be
used in a C program.'® We will illustrate our presentation with the sample program
segment CLI1 shown in Figure 10.10.

"80ur discussion here also applies to the C++ and C# programming languages, since we do not use
any of the object-oriented features but focus on the database programming mechanism.
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//Program CLI1:
0) #include sqglcli.h ;
1) void printSal() {
2) SQLHSTMT stmtl ;
3) SQLHDBC conl ;
4) SQLHENV envl ;
5) SQLRETURN retl, ret2, ret3, ret4d ;
6) retl = SQLAllocHandle(SQL_HANDLE_ENV, SQL NULL_ HANDLE, &envl)
7) if (!retl) ret2
8) if (!ret2) ret3
SQL NTS) else exit ;

r

SQLAllocHandle(SQL_HANDLE DBC, envl, &conl) else exit
SQLConnect(conl, "dbs", SQL NTS, "js", SQL _NTS, "xyz",

’
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9) if (!ret3) ret4 = SQLAllocHandle(SQL HANDLE STMT, conl, &stmtl) else exit ;

10) SQLPrepare(stmtl, "select Lname, Salary from EMPLOYEE where Ssn

SQL _NTS) ;
11) prompt("Enter a Social Security Number: ", ssn) ;
12) sQLBindParameter(stmtl, 1, SQL CHAR, &ssn, 9, &fetchlenl) ;
13) retl = SQLExecute(stmtl) ;
14) if (!retl) {
15) SQLBindCol(stmtl, 1, SQL CHAR, &lname, 15, &fetchlenl) ;
16) SQLBindCol(stmtl, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;
17) ret2 = SQLFetch(stmtl) ;
18) if (!ret2) printf(ssn, lname, salary)

19) else printf("Social Security Number does not exist: ", ssn)

20)  }
21) }

Figure 10.10
Program segment CLI1, a C program segment with SOL/CLI.

r

2n
- I

Handles to environment, connection, statement, and description
records. When using SQL/CLI, the SQL statements are dynamically created and
passed as string parameters in the function calls. Hence, it is necessary to keep track
of the information about host program interactions with the database in runtime
data structures because the database commands are processed at runtime. The
information is kept in four types of records, represented as structs in C data types.
An environment record is used as a container to keep track of one or more data-
base connections and to set environment information. A connection record keeps
track of the information needed for a particular database connection. A statement
record keeps track of the information needed for one SQL statement. A
description record keeps track of the information about tuples or parameters—for
example, the number of attributes and their types in a tuple, or the number and
types of parameters in a function call. This is needed when the programmer does
not know this information about the query when writing the program. In our
examples, we assume that the programmer knows the exact query, so we do not
show any description records.
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Each record is accessible to the program through a C pointer variable—called a
handle to the record. The handle is returned when a record is first created. To cre-
ate a record and return its handle, the following SQL/CLI function is used:

SQLAllocHandle(<handle type>, <handle_1>, <handle_2>)
In this function, the parameters are as follows:

B <handle_ type> indicates the type of record being created. The possible val-
ues for this parameter are the keywords SQL._HANDLE ENV, SQL._HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC, for an environment, connec-
tion, statement, or description record, respectively.

B <handle 1> indicates the container within which the new handle is being
created. For example, for a connection record this would be the environ-
ment within which the connection is being created, and for a statement
record this would be the connection for that statement.

B <handle_2> is the pointer (handle) to the newly created record of type
<handle_type>.

Steps in a database program. When writing a C program that will include
database calls through SQL/CLI, the following are the typical steps that are taken.
We illustrate the steps by referring to the example CLI1 in Figure 10.10, which
reads a Social Security number of an employee and prints the employee’s last name
and salary.

1. Including the library of functions. The library of functions comprising
SQL/CLI must be included in the C program. This is called sqlcli.h, and is
included using line 0 in Figure 10.10.

2. Declaring handle variables. Declare handle variables of types SQOLHSTMT,
SQLHDBC, SQLHENV, and SQLHDESC for the statements, connections, envi-
ronments, and descriptions needed in the program, respectively (lines 2
to 4).'* Also declare variables of type SQLRETURN (line 5) to hold the
return codes from the SQL/CLI function calls. A return code of 0 (zero)
indicates successful execution of the function call.

3. Environment record. An environment record must be set up in the program
using sQLAllocHandle. The function to do this is shown in line 6. Because
an environment record is not contained in any other record, the parameter
<handle_ 1> is the NULL handle soL._NULL_HANDLE (NULL pointer) when
creating an environment. The handle (pointer) to the newly created envi-
ronment record is returned in variable env1 in line 6.

4. Connecting to the database. A connection record is set up in the program
using SQLAllocHandle. Inline 7, the connection record created has the han-
dle con1 and is contained in the environment envl. A connection is then
established in con1 to a particular server database using the SpLConnect

470 keep our presentation simple, we will not show description records here.
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function of SQL/CLI (line 8). In our example, the database server name we
are connecting to is dbs and the account name and password for login are js
and xyz, respectively.

5. Statement record. A statement record is set up in the program using
SQLAllocHandle. In line 9, the statement record created has the handle
stmt1 and uses the connection conl.

6. Preparing an SQL statement and statement parameters. The SQL state-
ment is prepared using the SQL/CLI function sQLPrepare. In line 10,
this assigns the SQL statement string (the query in our example) to the
statement handle stmt1. The question mark (?) symbol in line 10 repre-
sents a statement parameter, which is a value to be determined at run-
time—typically by binding it to a C program variable. In general, there
could be several parameters in a statement string. They are distinguished
by the order of appearance of the question marks in the statement string
(the first ? represents parameter 1, the second ? represents parameter 2,
and so on). The last parameter in sgLPrepare should give the length of
the SQL statement string in bytes, but if we enter the keyword sor._NTs,
this indicates that the string holding the query is a NULL-terminated
string so that SQL can calculate the string length automatically. This use
of soL_NTS also applies to other string parameters in the function calls in
our examples.

7. Binding the statement parameters. Before executing the query, any param-
eters in the query string should be bound to program variables using the
SQL/CLI function sgLBindParameter. In Figure 10.10, the parameter
(indicated by ?) to the prepared query referenced by stmt1 is bound to the
C program variable ssn in line 12. If there are n parameters in the SQL state-
ment, we should have n sQLBindParameter function calls, each with a dif-
ferent parameter position (1,2, ... , n).

8. Executing the statement. Following these preparations, we can now exe-
cute the SQL statement referenced by the handle stmt1 using the func-
tion SQLExecute (line 13). Notice that although the query will be
executed in line 13, the query results have not yet been assigned to any C
program variables.

9. Processing the query result. In order to determine where the result of the
query is returned, one common technique is the bound columns approach.
Here, each column in a query result is bound to a C program variable using
the soLBindCol function. The columns are distinguished by their order of
appearance in the SQL query. In Figure 10.10 lines 15 and 16, the two col-
umns in the query (Lname and Salary) are bound to the C program vari-
ables 1name and salary, respectively.15

'5An alternative technique known as unbound columns uses different SQL/CLI functions, namely
SQLGetCol or SOLGetData, to retrieve columns from the query result without previously binding them;
these are applied after the SOLFetch command in line 17.
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10. Retrieving column values. Finally, in order to retrieve the column values into
the C program variables, the function sQLFetch is used (line 17). This func-
tion is similar to the FETCH command of embedded SQL. If a query result has
a collection of tuples, each SQLFetch call gets the next tuple and returns its
column values into the bound program variables. SQLFetch returns an excep-
tion (nonzero) code if there are no more tuples in the query result.'®

As we can see, using dynamic function calls requires a lot of preparation to set up
the SQL statements and to bind statement parameters and query results to the
appropriate program variables.

In CLI1 a single tuple is selected by the SQL query. Figure 10.11 shows an example
of retrieving multiple tuples. We assume that appropriate C program variables have
been declared as in Figure 10.1. The program segment in CLI2 reads (inputs) a

0)
1)
2)
3)
4)
5)
6)
7)
8)

9)
10)

11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)

//Program Segment CLI2: Figure 10.11
#include sqglcli.h ; Program segment CLI2, a C program segment
that uses SOL/CLI for a query with a collection

void printDepartmentEmps() {
of tuples in its result.

SQLHSTMT stmtl ;
SQLHDBC conl ;
SQLHENV envl ;
SQLRETURN retl, ret2, ret3, retd ;
retl = SQLAllocHandle(SQL_HANDLE ENV, SQL NULL HANDLE, &envl) ;
if (!retl) ret2 SQLAllocHandle(SQL_HANDLE DBC, envl, &conl) else exit ;
if (!ret2) ret3 SQLConnect(conl, "dbs", SQL NTS, "js", SQL_NTS, "xyz",
SQL _NTS) else exit ;
if (!ret3) ret4 = SQLAllocHandle(SQL HANDLE STMT, conl, &stmtl) else exit ;
SQLPrepare(stmtl, "select Lname, Salary from EMPLOYEE where Dno = ?",
SQL_NTS) ;
prompt ("Enter the Department Number: ", dno) ;
SQLBindParameter(stmtl, 1, SQL_ INTEGER, &dno, 4, &fetchlenl) ;
retl = SQLExecute(stmtl) ;
if (!retl) {
SQLBindCol(stmtl, 1, SQL_CHAR, &lname, 15, &fetchlenl) ;
SQLBindCol(stmtl, 2, SQL FLOAT, &salary, 4, &fetchlen2) ;
ret2 = SQLFetch(stmtl) ;
while (!ret2) {
printf(lname, salary) ;
ret2 = SQLFetch(stmtl) ;

}

}

181f unbound program variables are used, SQLFetch returns the tuple into a temporary program area.
Each subsequent SOLGetCol (or SQLGetData) returns one attribute value in order. Basically, for each
row in the query result, the program should iterate over the attribute values (columns) in that row. This is
useful if the number of columns in the query result is variable.
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department number and then retrieves the employees who work in that depart-
ment. A loop then iterates over each employee record, one at a time, and prints the
employee’s last name and salary.

10.3.2 JDBC: SQL Class Library for Java Programming

We now turn our attention to how SQL can be called from the Java object-oriented

: 17 a . . .
programming language.”’ The class libraries and associated function calls for this
access are known as JDBC.!® The Java programming language was designed to be
platform independent—that is, a program should be able to run on any type of
computer system that has a Java interpreter installed. Because of this portability,
many RDBMS vendors provide JDBC drivers so that it is possible to access their
systems via Java programs.

JDBC drivers. A JDBC driver is basically an implementation of the classes and
associated objects and function calls specified in JDBC for a particular vendor’s
RDBMS. Hence, a Java program with JDBC objects and function calls can access
any RDBMS that has a JDBC driver available.

Because Java is object-oriented, its function libraries are implemented as classes.
Before being able to process JDBC function calls with Java, it is necessary to import
the JDBC class libraries, which are called java.sql.*. These can be downloaded
and installed via the Web."”

JDBC is designed to allow a single Java program to connect to several different
databases. These are sometimes called the data sources accessed by the Java pro-
gram, and could be stored using RDBMSs from different vendors residing on dif-
ferent machines. Hence, different data source accesses within the same Java
program may require JDBC drivers from different vendors. To achieve this flexibil-
ity, a special JDBC class called the driver manager class is employed, which keeps
track of the installed drivers. A driver should be registered with the driver manager
before it is used. The operations (methods) of the driver manager class include
getDriver, registerDriver, and deregisterDriver. These can be used to add
and remove drivers for different systems dynamically. Other functions set up and
close connections to data sources.

To load a JDBC driver explicitly, the generic Java function for loading a class can be
used. For example, to load the JDBC driver for the Oracle RDBMS, the following
command can be used:

Class.forName("oracle.jdbc.driver.OracleDriver")

"This section assumes familiarity with object-oriented concepts (see Chapter 11) and basic Java concepts.

18As we mentioned earlier, JDBC is a registered trademark of Sun Microsystems, although it is commonly
thought to be an acronym for Java Database Connectivity.

19These are available from several Web sites—for example, at http://industry,java.sun.com/products/
jdbc/drivers.
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This will register the driver with the driver manager and make it available to the
program. It is also possible to load and register the driver(s) needed in the com-
mand line that runs the program, for example, by including the following in the
command line:

-Djdbc.drivers = oracle.jdbc.driver

JDBC programming steps. The following are typical steps that are taken when
writing a Java application program with database access through JDBC function
calls. We illustrate the steps by referring to the example JDBC1 in Figure 10.12,
which reads a Social Security number of an employee and prints the employee’s last
name and salary.

1. Import the JDBC class library. The JDBC library of classes must be
imported into the Java program. These classes are called java.sql.*, and
can be imported using line 1 in Figure 10.12. Any additional Java class
libraries needed by the program must also be imported.

//Program JDBC1: Figure 10.12

0) import java.io.* ;
1) import java.sqgl.*

Program segment JDBC1,
a Java program segment
with JDBC.

2) class getEmpInfo {

public static void main (String args []) throws SQLException, IOException {
try { Class.forName("oracle.jdbc.driver.OracleDriver")

} catch (ClassNotFoundException x) {

3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25) }

}

}

System

.out.println ("Driver could not be loaded")

String dbacct, passwrd, ssn, lname ;

Double salary ;
dbacct =
passwrd = readentry("Enter password:")

readentry("Enter database account:") ;

Connection conn = DriverManager.getConnection

("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;
String stmtl = "select Lname, Salary from EMPLOYEE where Ssn = ?" ;
PreparedStatement p = conn.prepareStatement(stmtl) ;
ssn = readentry("Enter a Social Security Number: ") ;

p.clearParameters() ;

p.setString(l, ssn) ;

ResultSet r = p.executeQuery() ;
while (r.next()) {

}

lname
salary

= r.getString(l) ;
= r.getDouble(2) ;

system.out.printline(lname + salary) ;
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2. Load the JDBC driver. This is shown in lines 4 to 7. The Java exception in
line 5 occurs if the driver is not loaded successfully.

3. Create appropriate variables. These are the variables needed in the Java
program (lines 8 and 9).

4. The connection object. A connection object is created using the
getConnection function of the briverManager class of JDBC. In lines 12
and 13, the Connection object is created by using the function call
getConnection(urlstring), where urlstring has the form

jdbc:oracle:<driverType>:<dbaccount>/<password>

An alternative form is

getConnection(url, dbaccount, password)

Various properties can be set for a connection object, but they are mainly
related to transactional properties, which we discuss in Chapter 21.

5. The Prepared statement object. A statement object is created in the pro-
gram. In JDBC, there is a basic statement class, Statement, with two spe-
cialized subclasses: PreparedStatement and CallableStatement. The
example in Figure 10.12 illustrates how PreparedStatement objects are
created and used. The next example (Figure 10.13) illustrates the other type
of Statement objects. In line 14 in Figure 10.12, a query string with a sin-
gle parameter—indicated by the ? symbol—is created in the string variable
stmtl. In line 15, an object p of type PreparedStatement is created based
on the query string in stmt1 and using the connection object conn. In gen-
eral, the programmer should use Preparedstatement objects if a query is
to be executed multiple times, since it would be prepared, checked, and
compiled only once, thus saving this cost for the additional executions of
the query.

6. Setting the statement parameters. The question mark (?) symbol in line 14
represents a statement parameter, which is a value to be determined at run-
time, typically by binding it to a Java program variable. In general, there
could be several parameters, distinguished by the order of appearance of the
question marks within the statement string (first ? represents parameter 1,
second ? represents parameter 2, and so on), as we discussed previously.

7. Binding the statement parameters. Before executing a PreparedStatement
query, any parameters should be bound to program variables. Depending
on the type of the parameter, different functions such as setString,
setInteger, setDouble, and so on are applied to the Preparedstatement
object to set its parameters. The appropriate function should be used to cor-
respond to the data type of the parameter being set. In Figure 10.12, the
parameter (indicated by ?) in object p is bound to the Java program variable
ssn in line 18. The function setString is used because ssn is a string vari-
able. If there are n parameters in the SQL statement, we should have n set ...
functions, each with a different parameter position (1, 2, ... , n). Generally, it
is advisable to clear all parameters before setting any new values (line 17).
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//Program Segment JDBC2: Figure 10.13
0) import java.io.* ; Program segment JDBC2, a Java program
1) import java.sql.* segment that uses JDBC for a query with a
. collection of tuples in its result.
2) class printDepartmentEmps {
3) public static void main (String args [])
throws SQLException, IOException {
4) try { Class.forName("oracle.jdbc.driver.OracleDriver")
5) } catch (ClassNotFoundException x) {
6) System.out.println ("Driver could not be loaded")
7) }
8) String dbacct, passwrd, lname ;
9) Double salary ;
10) Integer dno ;
11) dbacct = readentry("Enter database account:")
12) passwrd = readentry("Enter password:")
13) Connection conn = DriverManager.getConnection
14) ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;
15) dno = readentry("Enter a Department Number: ") ;
16) String g = "select Lname, Salary from EMPLOYEE where Dno = " +
dno.tostring() ;
17) Statement s = conn.createStatement() ;
18) ResultSet r = s.executeQuery(q) ;
19) while (r.next()) {
20) lname = r.getString(l) ;
21) salary = r.getDouble(2) ;
22) system.out.printline(lname + salary) ;
23) P}
24) }

8. Executing the SQL statement. Following these preparations, we can now

execute the SQL statement referenced by the object p using the function
executeQuery (line 19). There is a generic function execute in JDBC,
plus two specialized functions: executeUpdate and executeQuery.
executeUpdate is used for SQL insert, delete, or update statements, and
returns an integer value indicating the number of tuples that were affected.
executeQuery is used for SQL retrieval statements, and returns an object of
type ResultSet, which we discuss next.

. Processing the Resultset object. In line 19, the result of the query is

returned in an object r of type ResultsSet. This resembles a two-dimensional
array or a table, where the tuples are the rows and the attributes returned are
the columns. A ResultSet object is similar to a cursor in embedded SQL
and an iterator in SQLJ. In our example, when the query is executed, r refers
to a tuple before the first tuple in the query result. The r.next () function
(line 20) moves to the next tuple (row) in the ResultsSet object and returns
NULL if there are no more objects. This is used to control the looping. The
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programmer can refer to the attributes in the current tuple using various
get ... functions that depend on the type of each attribute (for example,
getString, getInteger, getDouble, and so on). The programmer can
either use the attribute positions (1, 2) or the actual attribute names
("Lname", "Salary") with the get .. functions. In our examples, we used
the positional notation in lines 21 and 22.

In general, the programmer can check for SQL exceptions after each JDBC function
call. We did not do this to simplify the examples.

Notice that JDBC does not distinguish between queries that return single tuples and
those that return multiple tuples, unlike some of the other techniques. This is justi-
fiable because a single tuple result set is just a special case.

In example JDBCI, a single tuple is selected by the SQL query, so the loop in lines 20
to 24 is executed at most once. The example shown in Figure 10.13 illustrates the
retrieval of multiple tuples. The program segment in JDBC2 reads (inputs) a depart-
ment number and then retrieves the employees who work in that department. A
loop then iterates over each employee record, one at a time, and prints the employee’s
last name and salary. This example also illustrates how we can execute a query
directly, without having to prepare it as in the previous example. This technique is
preferred for queries that will be executed only once, since it is simpler to program.
In line 17 of Figure 10.13, the programmer creates a Statement object (instead of
PreparedStatement, as in the previous example) without associating it with a
particular query string. The query string q is passed to the statement object s when
it is executed in line 18.

This concludes our brief introduction to JDBC. The interested reader is referred to
the Web site http://java.sun.com/docs/books/tutorial/jdbc/, which contains many
further details about JDBC.

10.4 Database Stored Procedures
and SQL/PSM

This section introduces two additional topics related to database programming. In
Section 10.4.1, we discuss the concept of stored procedures, which are program
modules that are stored by the DBMS at the database server. Then in Section 10.4.2
we discuss the extensions to SQL that are specified in the standard to include
general-purpose programming constructs in SQL. These extensions are known as
SQL/PSM (SQL/Persistent Stored Modules) and can be used to write stored proce-
dures. SQL/PSM also serves as an example of a database programming language
that extends a database model and language—namely, SQL—with programming
language constructs, such as conditional statements and loops.

10.4.1 Database Stored Procedures and Functions

In our presentation of database programming techniques so far, there was an
implicit assumption that the database application program was running on a client
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machine, or more likely at the application server computer in the middle-tier of a
three-tier client-server architecture (see Section 2.5.4 and Figure 2.7). In either case,
the machine where the program is executing is different from the machine on which
the database server—and the main part of the DBMS software package—is located.
Although this is suitable for many applications, it is sometimes useful to create
database program modules—procedures or functions—that are stored and exe-
cuted by the DBMS at the database server. These are historically known as database
stored procedures, although they can be functions or procedures. The term used in
the SQL standard for stored procedures is persistent stored modules because these
programs are stored persistently by the DBMS, similarly to the persistent data
stored by the DBMS.

Stored procedures are useful in the following circumstances:

m If a database program is needed by several applications, it can be stored at
the server and invoked by any of the application programs. This reduces
duplication of effort and improves software modularity.

® Executing a program at the server can reduce data transfer and communica-
tion cost between the client and server in certain situations.

B These procedures can enhance the modeling power provided by views by
allowing more complex types of derived data to be made available to the
database users via the stored procedures. Additionally, they can be used to
check for complex constraints that are beyond the specification power of
assertions and triggers.

In general, many commercial DBMSs allow stored procedures and functions to be
written in a general-purpose programming language. Alternatively, a stored proce-
dure can be made of simple SQL commands such as retrievals and updates. The
general form of declaring stored procedures is as follows:

CREATE PROCEDURE <procedure name> (<parameters>)
<local declarations>
<procedure body> ;

The parameters and local declarations are optional, and are specified only if needed.
For declaring a function, a return type is necessary, so the declaration form is:

CREATE FUNCTION <function name> (<parameters>)
RETURNS <return type>

<local declarations>

<function body> ;

If the procedure (or function) is written in a general-purpose programming language,
it is typical to specify the language as well as a file name where the program code is
stored. For example, the following format can be used:

CREATE PROCEDURE <procedure name> (<parameters>)
LANGUAGE <programming language name>
EXTERNAL NAME <file path name> ;
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In general, each parameter should have a parameter type that is one of the SQL
data types. Each parameter should also have a parameter mode, which is one of IN,
OUT, or INOUT. These correspond to parameters whose values are input only, out-
put (returned) only, or both input and output, respectively.

Because the procedures and functions are stored persistently by the DBMS, it
should be possible to call them from the various SQL interfaces and programming
techniques. The CALL statement in the SQL standard can be used to invoke a stored
procedure—either from an interactive interface or from embedded SQL or SQLJ.
The format of the statement is as follows:

CALL <procedure or function name> (<argument list>) ;

If this statement is called from JDBC, it should be assigned to a statement object of
type CallableStatement (see Section 10.3.2).

10.4.2 SQL/PSM: Extending SOL for Specifying Persistent
Stored Modules

SQL/PSM is the part of the SQL standard that specifies how to write persistent
stored modules. It includes the statements to create functions and procedures that
we described in the previous section. It also includes additional programming con-
structs to enhance the power of SQL for the purpose of writing the code (or body)
of stored procedures and functions.

In this section, we discuss the SQL/PSM constructs for conditional (branching)
statements and for looping statements. These will give a flavor of the type of con-
structs that SQL/PSM has incorporated;*’ then we give an example to illustrate how
these constructs can be used.

The conditional branching statement in SQL/PSM has the following form:

IF <condition> THEN <statement list>
ELSEIF <condition> THEN <statement list>

ELSEIF <condition> THEN <statement list>
ELSE <statement list>
END IF;

Consider the example in Figure 10.14, which illustrates how the conditional branch
structure can be used in an SQL/PSM function. The function returns a string value
(line 1) describing the size of a department within a company based on the number
of employees. There is one IN integer parameter, deptno, which gives a depart-
ment number. A local variable NoOfEmps is declared in line 2. The query in lines 3
and 4 returns the number of employees in the department, and the conditional

2OWe only give a brief introduction to SQL/PSM here. There are many other features in the SQL/PSM
standard.
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Figure 10.14
Declaring a function in
SQL/PSM.

//Function PSM1:

0) CREATE FUNCTION Dept_ size(IN deptno INTEGER)
1) RETURNS VARCHAR [7]

2) DECLARE No_of emps INTEGER ;

3) SELECT COUNT(*) INTO No_of_ emps

4) FROM EMPLOYEE WHERE Dno = deptno ;

5) IF No_of emps > 100 THEN RETURN "HUGE"

6) ELSEIF No_of emps > 25 THEN RETURN "LARGE"
7) ELSEIF No_of emps > 10 THEN RETURN "MEDIUM"
8) ELSE RETURN "SMALL"

9) END IF ;

branch in lines 5 to 8 then returns one of the values {HUGE’, ‘LARGE’, MEDIUM’,
‘SMALL’} based on the number of employees.

SQL/PSM has several constructs for looping. There are standard while and repeat
looping structures, which have the following forms:

WHILE <condition> DO
<statement list>
END WHILE ;
REPEAT
<statement list>
UNTIL <condition>
END REPEAT ;

There is also a cursor-based looping structure. The statement list in such a loop is
executed once for each tuple in the query result. This has the following form:

FOR <loop name> AS <cursor name> CURSOR FOR <query> DO
<statement list>
END FOR;

Loops can have names, and there is a LEAVE <loop name> statement to break a loop
when a condition is satisfied. SQL/PSM has many other features, but they are out-
side the scope of our presentation.

10.5 Comparing the Three Approaches

In this section, we briefly compare the three approaches for database programming
and discuss the advantages and disadvantages of each approach.

4. Embedded SQL Approach. The main advantage of this approach is that the
query text is part of the program source code itself, and hence can be checked
for syntax errors and validated against the database schema at compile time.
This also makes the program quite readable, as the queries are readily visible
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in the source code. The main disadvantages are the loss of flexibility in
changing the query at runtime, and the fact that all changes to queries must
go through the whole recompilation process. In addition, because the que-
ries are known beforehand, the choice of program variables to hold the
query results is a simple task, and so the programming of the application is
generally easier. However, for complex applications where queries have to
be generated at runtime, the function call approach will be more suitable.

5. Library of Classes and Function Calls Approach. This approach provides
more flexibility in that queries can be generated at runtime if needed. How-
ever, this leads to more complex programming, as program variables that
match the columns in the query result may not be known in advance.
Because queries are passed as statement strings within the function calls, no
checking can be done at compile time. All syntax checking and query valida-
tion has to be done at runtime by preparing the query, and the programmer
must check and account for possible additional runtime errors within the
program code.

6. Database Programming Language Approach. This approach does not suf-
fer from the impedance mismatch problem, as the programming language
data types are the same as the database data types. However, programmers
must learn a new programming language rather than use a language they are
already familiar with. In addition, some database programming languages
are vendor-specific, whereas general-purpose programming languages can
easily work with systems from multiple vendors.

10.6 Summary

In this chapter we presented additional features of the SQL database language. In
particular, we presented an overview of the most important techniques for database
programming in Section 10.1. Then we discussed the various approaches to data-
base application programming in Sections 10.2 to 10.4.

In Section 10.2, we discussed the general technique known as embedded SQL,
where the queries are part of the program source code. A precompiler is typically
used to extract SQL commands from the program for processing by the DBMS, and
replacing them with function calls to the DBMS compiled code. We presented an
overview of embedded SQL, using the C programming language as host language in
our examples. We also discussed the SQLJ technique for embedding SQL in Java
programs. The concepts of cursor (for embedded SQL) and iterator (for SQLJ) were
presented and illustrated by examples to show how they are used for looping over
the tuples in a query result, and extracting the attribute value into program vari-
ables for further processing.

In Section 10.3, we discussed how function call libraries can be used to access SQL
databases. This technique is more dynamic than embedding SQL, but requires
more complex programming because the attribute types and number in a query
result may be determined at runtime. An overview of the SQL/CLI standard was
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presented, with examples using C as the host language. We discussed some of the
functions in the SQL/CLI library, how queries are passed as strings, how query
parameters are assigned at runtime, and how results are returned to program vari-
ables. We then gave an overview of the JDBC class library, which is used with Java,
and discussed some of its classes and operations. In particular, the Resultset class
is used to create objects that hold the query results, which can then be iterated over
by the next () operation. The get and set functions for retrieving attribute values
and setting parameter values were also discussed.

In Section 10.4, we gave a brief overview of stored procedures, and discussed
SQL/PSM as an example of a database programming language. Finally, we briefly
compared the three approaches in Section 10.5. It is important to note that we chose
to give a comparative overview of the three main approaches to database program-
ming, since studying a particular approach in depth i